
Rational Unified Process

Best Practices for Software
Development Teams

Rational Software White Paper
TP026B, Rev 11/01

Table of Contents

WHAT IS THE RATIONAL UNIFIED PROCESS? .. 1
EFFECTIVE DEPLOYMENT OF 6 BEST PRACTICES.. 1
PROCESS OVERVIEW .. 3

TWO DIMENSIONS.. 3
PHASES AND ITERATIONS - THE TIME DIMENSION.. 3

INCEPTION PHASE.. 4
ELABORATION PHASE.. 4
CONSTRUCTION PHASE.. 6
TRANSITION PHASE ... 6
ITERATIONS ... 7

STATIC STRUCTURE OF THE PROCESS... 7
ACTIVITIES, ARTIFACTS, AND WORKERS .. 8
WORKFLOWS ... 9

CORE WORKFLOWS ... 10
BUSINESS MODELING .. 10
REQUIREMENTS ... 11
ANALYSIS & DESIGN... 11
IMPLEMENTATION.. 12
TEST .. 12
DEPLOYMENT .. 13
PROJECT MANAGEMENT.. 13
CONFIGURATION & CHANGE MANAGEMENT... 13
ENVIRONMENT .. 14

RATIONAL UNIFIED PROCESS - THE PRODUCT ... 14
NAVIGATING THE KNOWLEDGE BASE.. 15
DEVELOPMENT KIT FOR PROCESS CUSTOMIZATION .. 15

INTEGRATION WITH TOOLS... 16
A BRIEF HISTORY OF THE RATIONAL UNIFIED PROCESS.. 16

REFERENCES.. 18

Abstract
This paper presents an overview of the Rational Unified Process the Rational Unified Process is a
software engineering process, delivered through a web-enabled, searchable knowledge base. The process
enhances team productivity and delivers software best practices via guidelines, templates and tool mentors
for all critical software lifecycle activities. The knowledge base allows development teams to gain the full
benefits of the industry-standard Unified Modeling Language (UML).

Rational Unified Process: Best Practices for Software development Teams

1

What is the Rational Unified Process?
The Rational Unified Process® is a Software Engineering Process. It provides a disciplined approach to assigning
tasks and responsibilities within a development organization. Its goal is to ensure the production of high-quality
software that meets the needs of its end-users, within a predictable schedule and budget.
[11, 13]

The Rational Unified Process is a process product, developed and maintained by Rational® Software. The
development team for the Rational Unified Process are working closely with customers, partners, Rational's product
groups as well as Rational's consultant organization, to ensure that the process is continuously updated and
improved upon to reflect recent experiences and evolving and proven best practices.

The Rational Unified Process enhances team productivity, by providing every team member with easy access to a
knowledge base with guidelines, templates and tool mentors for all critical development activities. By having all
team members accessing the same knowledge base, no matter if you work with requirements, design, test, project
management, or configuration management, we ensure that all team members share a common language, process
and view of how to develop software.

The Rational Unified Process activities create and maintain models. Rather than focusing on the production
of large amount of paper documents, the Unified Process emphasizes the development and maintenance of
models—semantically rich representations of the software system under development. [3, 7, 8]

The Rational Unified Process is a guide for how to effectively use the Unified Modeling Language
(UML). The UML is an industry-standard language that allows us to clearly communicate requirements,
architectures and designs. The UML was originally created by Rational Software, and is now maintained by the
standards organization Object Management Group (OMG). [4]

The Rational Unified Process is supported by tools, which automate large parts of the process. They are used to
create and maintain the various artifacts—models in particular—of the software engineering process: visual
modeling, programming, testing, etc. They are invaluable in supporting all the bookkeeping associated with the
change management as well as the configuration management that accompanies each iteration.

The Rational Unified Process is a configurable process. No single process is suitable for all software development.
The Unified Process fits small development teams as well as large development organizations. The Unified Process
is founded on a simple and clear process architecture that provides commonality across a family of processes. Yet, it
can be varied to accommodate different situations. It contains a Development Kit, providing support for configuring
the process to suit the needs of a given organization.

The Rational Unified Process captures many of the best practices in modern software development in a form that is
suitable for a wide range of projects and organizations. Deploying these best practices using the Rational Unified
Process as your guide offers development teams a number of key advantages. In next section, we describe the six
fundamental best practices of the Rational Unified Process.

Effective Deployment of 6 Best Practices
The Rational Unified Process describes how to effectively deploy commercially proven approaches to software
development for software development teams. These are called “best practices” not so much because you can
precisely quantify their value, but rather, because they are observed to be commonly used in industry by successful
organizations. The Rational Unified Process provides each team member with the guidelines, templates and tool
mentors necessary for the entire team to take full advantage of among others the following best practices:

1. Develop software iteratively
2. Manage requirements
3. Use component-based architectures

Rational Unified Process: Best Practices for Software development Teams

2

4. Visually model software
5. Verify software quality
6. Control changes to software

Develop Software Iteratively  Given today’s sophisticated software systems, it is not possible to sequentially
first define the entire problem, design the entire solution, build the software and then test the product at the end. An
iterative approach is required that allows an increasing understanding of the problem through successive
refinements, and to incrementally grow an effective solution over multiple iterations. The Rational Unified Process
supports an iterative approach to development that addresses the highest risk items at every stage in the lifecycle,
significantly reducing a project’s risk profile. This iterative approach helps you attack risk through demonstrable
progress frequent, executable releases that enable continuous end user involvement and feedback. Because each
iteration ends with an executable release, the development team stays focused on producing results, and frequent
status checks help ensure that the project stays on schedule. An iterative approach also makes it easier to
accommodate tactical changes in requirements, features or schedule. [1, 2, 10]

Manage Requirements  The Rational Unified Process describes how to elicit, organize, and document required
functionality and constraints; track and document tradeoffs and decisions; and easily capture and communicate
business requirements. The notions of use case and scenarios proscribed in the process has proven to be an excellent
way to capture functional requirements and to ensure that these drive the design, implementation and testing of
software, making it more likely that the final system fulfills the end user needs. They provide coherent and traceable
threads through both the development and the delivered system. [7]

Use Component-based Architectures  The process focuses on early development and baselining of a robust
executable architecture, prior to committing resources for full-scale development. It describes how to design a
resilient architecture that is flexible, accommodates change, is intuitively understandable, and promotes more
effective software reuse. The Rational Unified Process supports component-based software development.
Components are non-trivial modules, subsystems that fulfill a clear function. The Rational Unified Process provides
a systematic approach to defining an architecture using new and existing components. These are assembled in a
well-defined architecture, either ad hoc, or in a component infrastructure such as the Internet, CORBA, and COM,
for which an industry of reusable components is emerging. [5]

Visually Model Software  The process shows you how to visually model software to capture the structure and
behavior of architectures and components. This allows you to hide the details and write code using “graphical
building blocks.” Visual abstractions help you communicate different aspects of your software; see how the
elements of the system fit together; make sure that the building blocks are consistent with your code; maintain
consistency between a design and its implementation; and promote unambiguous communication. The industry-
standard Unified Modeling Language (UML), created by Rational Software, is the foundation for successful visual
modeling. [4, 12]

Verify Software Quality  Poor application performance and poor reliability are common factors which
dramatically inhibit the acceptability of today’s software applications. Hence, quality should be reviewed with
respect to the requirements based on reliability, functionality, application performance and system performance. The
Rational Unified Process assists you in the planning, design, implementation, execution, and evaluation of these test
types. Quality assessment is built into the process, in all activities, involving all participants, using objective
measurements and criteria, and not treated as an afterthought or a separate activity performed by a separate group.

Control Changes to Software  The ability to manage change is making certain that each change is acceptable,
and being able to track changes is essential in an environment in which change is inevitable. The process describes
how to control, track and monitor changes to enable successful iterative development. It also guides you in how to
establish secure workspaces for each developer by providing isolation from changes made in other workspaces and
by controlling changes of all software artifacts (e.g., models, code, documents, etc.). And it brings a team together to
work as a single unit by describing how to automate integration and build management.

Rational Unified Process: Best Practices for Software development Teams

3

Process Overview

Two Dimensions
The process can be described in two dimensions, or along two axis:

• the horizontal axis represents time and shows the dynamic aspect of the process as it is enacted, and it is
expressed in terms of cycles, phases, iterations, and milestones.

• the vertical axis represents the static aspect of the process: how it is described in terms of activities,
artifacts, workers and workflows.

The Iterative Model graph shows how the process is structured along two dimensions

Phases and Iterations - The Time Dimension

This is the dynamic organization of the process along time.

The software lifecycle is broken into cycles, each cycle working on a new generation of the product. The
Rational Unified Process divides one development cycle in four consecutive phases [10]

• Inception phase
• Elaboration phase
• Construction phase
• Transition phase

Each phase is concluded with a well-defined milestone—a point in time at which certain critical decisions must be
made, and therefore key goals must have been achieved [2].

The phases and major milestones in the process.

Rational Unified Process: Best Practices for Software development Teams

4

Each phase has a specific purpose.
Inception Phase

During the inception phase, you establish the business case for the system and delimit the project scope. To
accomplish this you must identify all external entities with which the system will interact (actors) and
define the nature of this interaction at a high-level. This involves identifying all use cases and describing a
few significant ones. The business case includes success criteria, risk assessment, and estimate of the
resources needed, and a phase plan showing dates of major milestones. [10, 14]
The outcome of the inception phase is:

• A vision document: a general vision of the core project's requirements, key features, and main constraints.
• A initial use-case model (10% -20%) complete).
• An initial project glossary (may optionally be partially expressed as a domain model).
• An initial business case, which includes business context, success criteria (revenue projection, market

recognition, and so on), and financial forecast.
• An initial risk assessment.
• A project plan, showing phases and iterations.
• A business model, if necessary.
• One or several prototypes.

Milestone : Lifecycle Objectives

At the end of the inception phase is the first major project milestone: the Lifecycle Objectives Milestone.
The evaluation criteria for the inception phase are:

• Stakeholder concurrence on scope definition and cost/schedule estimates.
• Requirements understanding as evidenced by the fidelity of the primary use cases.
• Credibility of the cost/schedule estimates, priorities, risks, and development process.
• Depth and breadth of any architectural prototype that was developed.
• Actual expenditures versus planned expenditures.

The project may be cancelled or considerably re-thought if it fails to pass this milestone.

Elaboration Phase

The purpose of the elaboration phase is to analyze the problem domain, establish a sound architectural foundation,
develop the project plan, and eliminate the highest risk elements of the project. To accomplish these objectives, you
must have the “mile wide and inch deep” view of the system. Architectural decisions have to be made with an
understanding of the whole system: its scope, major functionality and nonfunctional requirements such as
performance requirements.

It is easy to argue that the elaboration phase is the most critical of the four phases. At the end of this phase, the hard
“engineering” is considered complete and the project undergoes its most important day of reckoning: the decision on
whether or not to commit to the construction and transition phases. For most projects, this also corresponds to the
transition from a mobile, light and nimble, low-risk operation to a high-cost, high-risk operation with substantial
inertia. While the process must always accommodate changes, the elaboration phase activities ensure that the
architecture, requirements and plans are stable enough, and the risks are sufficiently mitigated, so you can
predictably determine the cost and schedule for the completion of the development. Conceptually, this level of
fidelity would correspond to the level necessary for an organization to commit to a fixed-price construction phase.

Rational Unified Process: Best Practices for Software development Teams

5

In the elaboration phase, an executable architecture prototype is built in one or more iterations, depending
on the scope, size, risk, and novelty of the project. This effort should at least address the critical use cases identified
in the inception phase, which typically expose the major technical risks of the project. While an evolutionary
prototype of a production-quality component is always the goal, this does not exclude the development of one or
more exploratory, throwaway prototypes to mitigate specific risks such as design/requirements trade-offs,
component feasibility study, or demonstrations to investors, customers, and end-users.

The outcome of the elaboration phase is:

• A use-case model (at least 80% complete) — all use cases and actors have been identified, and most use-
case descriptions have been developed.

• Supplementary requirements capturing the non functional requirements and any requirements that are not
associated with a specific use case.

• A Software Architecture Description.
• An executable architectural prototype.
• A revised risk list and a revised business case.
• A development plan for the overall project, including the coarse-grained project plan, showing iterations”

and evaluation criteria for each iteration.
• An updated development case specifying the process to be used.
• A preliminary user manual (optional).

Milestone : Lifecycle Architecture

At the end of the elaboration phase is the second important project milestone, the Lifecycle Architecture
Milestone. At this point, you examine the detailed system objectives and scope, the choice of architecture, and the
resolution of the major risks.

The main evaluation criteria for the elaboration phase involves the answers to these questions:

• Is the vision of the product stable?
• Is the architecture stable?
• Does the executable demonstration show that the major risk elements have been addressed and credibly

resolved?
• Is the plan for the construction phase sufficiently detailed and accurate? Is it backed up with a credible

basis of estimates?
• Do all stakeholders agree that the current vision can be achieved if the current plan is executed to develop

the complete system, in the context of the current architecture?
• Is the actual resource expenditure versus planned expenditure acceptable?

The project may be aborted or considerably re-thought if it fails to pass this milestone.

Rational Unified Process: Best Practices for Software development Teams

6

Construction Phase

During the construction phase, all remaining components and application features are developed and integrated into
the product, and all features are thoroughly tested. The construction phase is, in one sense, a manufacturing process
where emphasis is placed on managing resources and controlling operations to optimize costs, schedules, and
quality. In this sense, the management mindset undergoes a transition from the development of intellectual property
during inception and elaboration, to the development of deployable products during construction and transition.

Many projects are large enough that parallel construction increments can be spawned. These parallel activities can
significantly accelerate the availability of deployable releases; they can also increase the complexity of resource
management and workflow synchronization. A robust architecture and an understandable plan are highly correlated.
In other words, one of the critical qualities of the architecture is its ease of construction. This is one reason why the
balanced development of the architecture and the plan is stressed during the elaboration phase. The outcome of the
construction phase is a product ready to put in hands of its end-users. At minimum, it consists of:

• The software product integrated on the adequate platforms.
• The user manuals.
• A description of the current release.

Milestone : Initial Operational Capability

At the end of the construction phase is the third major project milestone (Initial Operational Capability Milestone).
At this point, you decide if the software, the sites, and the users are ready to go operational, without exposing the
project to high risks. This release is often called a “beta” release.

The evaluation criteria for the construction phase involve answering these questions:

• Is this product release stable and mature enough to be deployed in the user community?
• Are all stakeholders ready for the transition into the user community?
• Are the actual resource expenditures versus planned expenditures still acceptable?

Transition may have to be postponed by one release if the project fails to reach this milestone.

Transition Phase

The purpose of the transition phase is to transition the software product to the user community. Once the product has
been given to the end user, issues usually arise that require you to develop new releases, correct some problems, or
finish the features that were postponed.

The transition phase is entered when a baseline is mature enough to be deployed in the end-user domain.
This typically requires that some usable subset of the system has been completed to an acceptable level of quality
and that user documentation is available so that the transition to the user will provide positive results for all parties.

This includes:

• “beta testing” to validate the new system against user expectations
• parallel operation with a legacy system that it is replacing
• conversion of operational databases
• training of users and maintainers
• roll-out the product to the marketing, distribution, and sales teams

Rational Unified Process: Best Practices for Software development Teams

7

The transition phase focuses on the activities required to place the software into the hands of the users. Typically,
this phase includes several iterations, including beta releases, general availability releases, as well as bug-fix and
enhancement releases. Considerable effort is expended in developing user-oriented documentation, training users,
supporting users in their initial product use, and reacting to user feedback. At this point in the lifecycle, however,
user feedback should be confined primarily to product tuning, configuring, installation, and usability issues.

The primary objectives of the transition phase include:

• Achieving user self-supportability
• Achieving stakeholder concurrence that deployment baselines are complete and consistent with

theevaluation criteria of the vision
• Achieving final product baseline as rapidly and cost effectively as practical

This phase can range from being very simple to extremely complex, depending on the type of product. For example,
a new release of an existing desktop product may be very simple, whereas replacing a nation's air-traffic control
system would be very complex.

Milestone: Product Release

At the end of the transition phase is the fourth important project milestone, the Product Release Milestone.
At this point, you decide if the objectives were met, and if you should start another development cycle. In
some cases, this milestone may coincide with the end of the inception phase for the next cycle.

The primary evaluation criteria for the transition phase involve the answers to these questions:

• Is the user satisfied?
• Are the actual resources expenditures versus planned expenditures still acceptable?

Iterations
Each phase in the Rational Unified Process can be further broken down into iterations. An iteration is a complete
development loop resulting in a release (internal or external) of an executable product, a subset of the final product
under development, which grows incrementally from iteration to iteration to become the final system [10].

Benefits of an iterative approach
Compared to the traditional waterfall process, the iterative process has the following advantages:

• Risks are mitigated earlier
• Change is more manageable
• Higher level of reuse
• The project team can learn along the way
• Better overall quality

Static Structure of the Process
A process describes who is doing what, how, and when. The Rational Unified Process is represented using
four primary modeling elements:

• Workers, the ‘who’
• Activities, the ‘how’
• Artifacts, the ‘what’
• Workflows, the ‘when’

Rational Unified Process: Best Practices for Software development Teams

8

Activities, Artifacts, and Workers

Workers, activites, and artifacts.

Worker
A worker defines the behavior and responsibilities of an individual, or a group of individuals working
together as a team. You could regard a worker as a "hat" an individual can wear in the project. One
individual may wear many different hats. This is an important distinction because it is natural to think of a
worker as the individual or team itself, but in the Unified Process the worker is more the role defining how
the individuals should carry out the work. The responsibilities we assign to a worker includes both to
perform a certain set of activities as well as being owner of a set of artifacts.

People and Workers

Activity
An activity of a specific worker is a unit of work that an individual in that role may be asked to perform.
The activity has a clear purpose, usually expressed in terms of creating or updating some artifacts, such as a model, a
class, a plan. Every activity is assigned to a specific worker. The granularity of an activity is generally a few hours
to a few days, it usually involves one worker, and affects one or only a small number of artifacts. An activity should
be usable as an element of planning and progress; if it is too small, it will be neglected, and if it is too large, progress
would have to be expressed in terms of an activity’s parts.

Example of activities:

• Plan an iteration, for the Worker: Project Manager
• Find use cases and actors, for the Worker: System Analyst
• Review the design, for the Worker: Design Reviewer
• Execute performance test, for the Worker: Performance Tester

Rational Unified Process: Best Practices for Software development Teams

9

Artifact
An artifact is a piece of information that is produced, modified, or used by a process. Artifacts are the tangible
products of the project, the things the project produces or uses while working towards the final product. Artifacts are
used as input by workers to perform an activity, and are the result or output of such activities. In object-oriented
design terms, as activities are operations on an active object (the worker), artifacts are the parameters of these
activities.

• Artifacts may take various shapes or forms:
• A model, such as the Use-Case Model or the Design Model
• A model element, i.e. an element within a model, such as a class, a use case or a subsystem
• A document, such as Business Case or Software Architecture Document
• Source code
• Executables

Workflows
A mere enumeration of all workers, activities and artifacts does not quite constitute a process. We need a way to
describe meaningful sequences of activities that produce some valuable result, and to show interactions between
workers.

A workflow is a sequence of activities that produces a result of observable value.

In UML terms, a workflow can be expressed as a sequence diagram, a collaboration diagram, or an activity diagram.
We use a form of activity diagrams in this white paper.

Example of workflow

Note that it is not always possible or practical to represent all of the dependencies between activities. Often two
activities are more tightly interwoven than shown, especially when they involve the same worker or the same
individual. People are not machines, and the workflow cannot be interpreted literally as a program for people, to be
followed exactly and mechanically.

In the next section we will discuss the most essential type of workflows in the process, called Core Workflows.

Rational Unified Process: Best Practices for Software development Teams

10

Core workflows
There are nine core process workflows in the Rational Unified Process, which represent a partitioning of all
workers and activities into logical groupings.

The nine core process workflows

The core process workflows are divided into six core “engineering” workflows:

1. Business modeling workflow
2. Requirements workflow
3. Analysis & Design workflow
4. Implementation workflow
5. Test workflow
6. Deployment workflow

And three core “supporting” workflows:

1. Project Management workflow
2. Configuration and Change Management workflow
3. Environment workflow

Although the names of the six core engineering workflows may evoke the sequential phases in a traditional waterfall
process, we should keep in mind that the phases of an iterative process are different and that these workflows are
revisited again and again throughout the lifecycle. The actual complete workflow of a project interleaves these nine
core workflows, and repeats them with various emphasis and intensity at each iteration.

Business Modeling
One of the major problems with most business engineering efforts, is that the software engineering and the business
engineering community do not communicate properly with each other. This leads to the output from business
engineering is not being used properly as input to the software development effort, and vice-versa. The Rational
Unified Process addresses this by providing a common language and process for both communities, as well as
showing how to create and maintain direct traceability between business and software models.

In Business Modeling we document business processes using so called business use cases. This assures a common
understanding among all stakeholders of what business process needs to be supported in the organization. The

Rational Unified Process: Best Practices for Software development Teams

11

business use cases are analyzed to understand how the business should support the business processes. This is
documented in a business object-model. Many projects may choose not to do business modeling.

Requirements
The goal of the Requirements workflow is to describe what the system should do and allows the developers and the
customer to agree on that description. To achieve this, we elicit, organize, and document required functionality and
constraints; track and document tradeoffs and decisions.

A Vision document is created, and stakeholder needs are elicited. Actors are identified, representing the users, and
any other system that may interact with the system being developed. Use cases are identified, representing the
behavior of the system. Because use cases are developed according to the actor's needs, the system is more likely to
be relevant to the users. The following figure shows an example of a use-case model for a recycling-machine
system.

An example of use-case model with actors and use cases.

Each use case is described in detail. The use-case description shows how the system interacts step by step with the
actors and what the system does. Non-functional requirements are described in Supplementary Specifications.

The use cases function as a unifying thread throughout the system's development cycle. The same use-case model is
used during requirements capture, analysis & design, and test.

Analysis & Design
The goal of the Analysis & Design workflow is to show how the system will be realized in the implementation
phase. You want to build a system that:

• Performs—in a specific implementation environment—the tasks and functions specified in the use-case
descriptions.

• Fulfills all its requirements.
• Is structured to be robust (easy to change if and when its functional requirements change).

Analysis & Design results in a design model and optionally an analysis model. The design model serves as an
abstraction of the source code; that is, the design model acts as a 'blueprint' of how the source code is structured and
written.

The design model consists of design classes structured into design packages and design subsystems with well-
defined interfaces, representing what will become components in the implementation. It also contains descriptions of
how objects of these design classes collaborate to perform use cases. The next figure shows part of a sample design
model for the recycling-machine system in the use-case model shown in the previous figure.

Rational Unified Process: Best Practices for Software development Teams

12

Part of a design model with communicating design classes, and package group design classes.

The design activities are centered around the notion of architecture. The production and validation of this
architecture is the main focus of early design iterations. Architecture is represented by a number of architectural
views [9]. These views capture the major structural design decisions. In essence, architectural views are abstractions
or simplifications of the entire design, in which important characteristics are made more visible by leaving details
aside. The architecture is an important vehicle not only for developing a good design model, but also for increasing
the quality of any model built during system development.

Implementation
The purpose of implementation is:

• To define the organization of the code, in terms of implementation subsystems organized in layers.
• To implement classes and objects in terms of components (source files, binaries, executables, and others).
• To test the developed components as units.
• To integrate the results produced by individual implementers (or teams), into an executable system.

The system is realized through implementation of components. The Rational Unified Process describes how you
reuse existing components, or implement new components with well defined responsibility, making the system
easier to maintain, and increasing the possibilities to reuse.

Components are structured into Implementation Subsystems. Subsystems take the form of directories, with
additional structural or management information. For example, a subsystem can be created as a directory or a folder
in a file system, or a subsystem in Rational/Apex for C++ or Ada, or packages using Java.™

Test
The purposes of testing are:

• To verify the interaction between objects.
• To verify the proper integration of all components of the software.
• To verify that all requirements have been correctly implemented.
• To identify and ensure defects are addressed prior to the deployment of the software.

The Rational Unified Process proposes an iterative approach, which means that you test throughout the project. This
allows you to find defects as early as possible, which radically reduces the cost of fixing the defect. Tests are carried
out along three quality dimensions reliability, functionality, application performance and system performance. For
each of these quality dimensions, the process describes how you go through the test lifecycle of planning, design,
implementation, execution and evaluation.

Rational Unified Process: Best Practices for Software development Teams

13

Strategies for when and how to automate test are described. Test automation is especially important using an
iterative approach, to allow regression testing at then end of each iteration, as well as for each new version of the
product.

Deployment
The purpose of the deployment workflow is to successfully produce product releases, and deliver the
software to its end users. It covers a wide range of activities including:

• Producing external releases of the software.
• Packaging the software.
• Distributing the software.
• Installing the software.
• Providing help and assistance to users.
• In many cases, this also includes activities such as:
• Planning and conduct of beta tests.
• Migration of existing software or data.
• Formal acceptance.

Although deployment activities are mostly centered around the transition phase, many of the activities need
to be included in earlier phases to prepare for deployment at the end of the construction phase.
The Deployment and Environment workflows of the Rational Unified Process contain less detail than other
workflows.

Project Management
Software Project Management is the art of balancing competing objectives, managing risk, and overcoming
constraints to deliver, successfully, a product in which meets the needs of both customers (the payers of bills) and
the users. The fact that so few projects are unarguably successful is comment enough on the difficulty of the task.

This workflow focuses mainly on the specific aspect of an iterative development process. Our goal with
this section is to make the task easier by providing:

• A framework for managing software-intensive projects.
• Practical guidelines for planning, staffing, executing, and monitoring projects.
• A framework for managing risk.

It is not a recipe for success, but it presents an approach to managing the project that will markedly improve the
odds of delivering successful software. [14]

Configuration & Change Management
In this workflow we describe how to control the numerous artifacts produced by the many people who
work on a common project. Control helps avoid costly confusion, and ensures that resultant artifacts are not
in conflict due to some of the following kinds of problems:

• Simultaneous Update  When two or more workers work separately on the same artifact, the last one to
make changes destroys the work of the former.

• Limited Notification  When a problem is fixed in artifacts shared by several developers, and some of
them are not notified of the change.

• Multiple Versions  Most large programs are developed in evolutionary releases. One release could be in
customer use, while another is in test, and the third is still in development. If problems are found in any one
of the versions, fixes need to be propagated between them. Confusion can arise leading to costly fixes and
re-work unless changes are carefully controlled and monitored.

Rational Unified Process: Best Practices for Software development Teams

14

This workflow provides guidelines for managing multiple variants of evolving software systems, tracking which
versions are used in given software builds, performing builds of individual programs or entire releases according to
user-defined version specifications, and enforcing site-specific development policies.
We describe how you can manage parallel development, development done at multiple sites, and how to automate
the build process. This is especially important in an iterative process where you may want to be able to do builds as
often as daily, something that would become impossible without powerful automation.

We also describe how you can keep an audit trail on why, when and by whom any artifact was changed. This
workflow also covers change request management, i.e. how to report defects, manage them through their lifecycle,
and how to use defect data to track progress and trends.

Environment
The purpose of the environment workflow is to provide the software development organization with the software
development environment—both processes and tools—that are needed to support the development team.

This workflow focuses on the activities to configure the process in the context of a project. It also focuses on
activities to develop the guidelines needed to support a project. A step-by-step procedure is provided describing how
you implement a process in an organization.

The environment workflow also contains a Development Kit providing you with the guidelines, templates and tools
necessary to customize the process. The Development Kit is described in more detail in the section " Development
Kit for Process Customization" found later in this paper.

Certain aspects of the Environment workflow are not covered in the process such as selecting, acquiring, and
making the tools work, and maintaining the development environment.

Rational Unified Process - The Product
The Rational Unified Process product consists of:

• A web-enabled searchable knowledge base providing all team members with guidelines, templates, and
tool mentors for all critical development activities. The knowledge base can further be broken down to:

• Extensive guidelines for all team members, and all portions of the software lifecycle. Guidance is

provided for both the high-level thought process, as well as for the more tedious day-to-day
activities. The guidance is published in HTML form for easy platform-independent access on
your desktop.

• Tool mentors providing hands-on guidance for tools covering the full lifecycle. The tool mentors
are published in HTML form for easy platform-independent access on your desktop. See section
"Integration with Tools" for more details.

• Rational Rose ® examples and templates providing guidance for how to structure the information
in Rational Rose when following the Rational Unified Process (Rational Rose is Rational's tool
for visual modeling)

• SoDA ® templates  more than 10 SoDA templates that helps automate software documentation
(SoDA is Rational's Document Automation Tool)

• Microsoft ® Word templates  more than 30 Word templates assisting documentation in all
workflows and all portions of the lifecycle

• Microsoft Project Plans  Many managers find it difficult to create project plans that reflects an iterative

development approach. Our templates jump start the creation of project plans for iterative development,
according to the Rational Unified Process.

Rational Unified Process: Best Practices for Software development Teams

15

• Development Kit  describes how to customize and extend the Rational Unified Process to the specific
needs of the adopting organization or project, as well as provides tools and templates to assist the effort.
This development kit is described in more detail later in this section.

• Access to Resource Center containing the latest white papers, updates, hints, and techniques, as well as
references to add-on products and services.

• A book "Rational Unified Process — An Introduction", by Philippe Kruchten, published by Addison-

Wesley. The book is on 277 pages and provides a good introduction and overview to the process and the
knowledge base.

Navigating the Knowledge Base
The Rational Unified Process knowledge allows you to access the content with any of the popular web browsers,
such as Microsoft Internet Explorer and Netscape Navigator.

With the Rational Unified Process, you’re never more than a few mouse clicks away from the information you want.
The knowledge base contains a lot of hypertext links, and overviews of the various process elements are presented
through interactive images, making it easy to find relevant information in an intuitive fashion. The powerful search
engine, the index, and the “explorer looking” tree browser make it easy to use the process. Navigational buttons
allow you to move to the next or previous page as if reading a book.

Information is presented in many different views, allowing you to look at information relevant to your role, to a
specific activity, or to a workflow. Guided tours for easy learning of the process are provided for key project roles.

Interactive images and navigational buttons make it easy to find the specific information you are looking for.

Development Kit for Process Customization
The Rational Unified Process is general and complete enough to be used “as is” by some software development
organizations. However in many circumstances, this software engineering process will need to be modified,
adjusted, and tailored to accommodate the specific characteristics, constraints, and history of the adopting
organization. In particular a process should not be followed blindly, generating useless work, producing artifacts that
are of little added value. It must be made as lean as possible and still be able to fulfill its mission to produce rapidly
and predictably high quality software.

The process contains a Development Kit, which contains guidelines for how you can customize the

Rational Unified Process: Best Practices for Software development Teams

16

process to fit the specific needs of the adopting organization or project. Templates are also included for process
authoring, as well as tools for generation or manipulation of search engine, index, site map, tree browser, etc. The
Development Kit enables the customizing organization to maintain the look and feel of the Rational Unified Process.
The more the process is customized, the more difficult will it be to move over customizations to future releases of
the process. The Development Kit describes strategies, tools and techniques to minimize the work associated with
moving customizations to future releases.

Integration with Tools
A software-engineering process requires tools to support all activities in a system's lifecycle, especially to support
the development, maintenance and bookkeeping of various artifacts—models in particular. An iterative development
process puts special requirements on the tool set you use, such as better integration among tools and round-trip
engineering between models and code. You also need tools to keep track of changes, to support requirements
traceability, to automate documentation, as well as tools to automate tests to facilitate regression test. The Rational
Unified Process can be used with a variety of tools, either from Rational or other vendors. However, Rational
provides many well-integrated tools that efficiently support the Rational Unified Process.

 Below you find a list of some of Rational's tools that support the Rational Unified Process.

The Rational Unified Process contains Tool Mentors for almost all of these products. A Tool Mentor is a step-by-
step guide describing in detail how to operate a tool, (i.e. what menus to launch, what information to enter into
dialog boxes, and how to navigate a tool) to carry out an activity within the process. The Tool Mentors allow us to
link the tool-independent process to the actual manipulation of the tools in your daily work.

• Rational Requisite®Pro  Keeps the entire development team updated, and on track throughout the
application development process by making requirements easy to write, communicate and change.

• Rational ClearQuest™ — A Windows and Web-based change-request management product that enables
project teams to track and manage all change activities that occur throughout the development lifecycle.

• Rational Rose® 98 — The world’s leading visual modeling tool for business process modeling,
requirements analysis, and component architecture design.

• Rational SoDA®  Automates the production of documentation for the entire software development
process, dramatically reducing documentation time and costs.

• Rational Purify®  A run-time error checking tool for application and component software developers
programming in C/C++; helps detect memory errors.

• Rational Visual Quantify™ — An advanced performance profiling tool for application and component
software developers programming in C++, Visual Basic, and Java; helps eliminate performance
bottlenecks.

• Rational Visual PureCoverage™ — Automatically pinpoints areas of code not exercised in testing so
developers can thoroughly, efficiently and effectively test their applications.

• Rational TeamTest — Creates, maintains and executes automated functional tests, allowing you to
thoroughly test your code and determine if your software meets requirements and performs as expected.

• Rational PerformanceStudio™ — An easy-to-use, accurate and scalable too that measures and predicts
the performance of client/server and Web systems.

• Rational ClearCase® — Market-leading software configuration management tool, giving project
managers the power to track the evolution of every software development project.

A Brief history of the Rational Unified Process
The Rational Unified Process has matured over many years and reflects the collective experience of the many people
and companies that make up Rational Software’s rich heritage today.

Let us have a quick look at the process’s ancestry, as illustrated in the figure below, "Genealogy of the Rational
Unified Process".

Rational Unified Process: Best Practices for Software development Teams

17

Genealogy of the Rational Unified Process

Going backwards in time, the Rational Unified Process is the direct successor to the Rational Objectory Process
(version 4). The Rational Unified Process incorporates more material in the areas of data engineering, business
modeling, project management, and configuration management, the latter as a result of the merger with Pure-Atria.
It also brings a tighter integration to the Rational Software suite of tools.

The Rational Objectory Process was the result of the integration of the “Rational Approach” and the Objectory
process (version 3), after the merger of Rational Software Corporation and Objectory AB in 1995. From its
Objectory ancestry, the process has inherited its process structure and the central concept of use case. From its
Rational background, it gained the current formulation of iterative development and architecture. This version also
incorporated material on requirements management from Requisite, Inc. and a detailed test process inherited from
SQA,® Inc., companies which also merged with Rational Software. Finally, this process was the first one to use the
newly created Unified Modeling Language (UML 0.8).

The Objectory process was created in Sweden in 1987 by Ivar Jacobson as the result of his experience with
Ericsson. This process became a product at his company, Objectory AB. Centered around the concept of use case
and an object-oriented design method, it rapidly gained recognition in the software industry and has been adopted
and integrated by many companies worldwide. A simplified version of the Objectory process was published as a text
book in 1992.

The Rational Unified Process is a specific and detailed instance of a more generic process described by Ivar
Jacobson, Grady Booch, and James Rumbaugh in the textbook, The Unified Software Development Process.

Rational Unified Process: Best Practices for Software development Teams

18

References

1. Barry W. Boehm, A Spiral Model of Software Development and Enhancement, Computer, May 1988,
IEEE, pp.61-72

2. Barry W. Boehm, Anchoring the Software Process, IEEE Software, 13, 4, July 1996, pp. 73-82.

3. Grady Booch, Object Solutions, Addison-Wesley, 1995.

4. Grady Booch, Ivar Jacobson, and James Rumbaugh, Unified Modeling Language 1.3, White paper,
Rational Software Corp., 1998.

5. Alan W. Brown (ed.), Component-Based Software Engineering, IEEE Computer Society, Los
Alamitos, CA, 1996, pp.140.

6. Michael T. Devlin, and Walker E. Royce, Improving Software Economics in the Aerospace and
Defense Industry, Technical paper TP-46, Santa Clara, CA, Rational Software Corp., 1995

7. Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Övergaard, Object-Oriented Software
Engineering—A Use Case Driven Approach, Wokingham, England, Addison-Wesley, 1992, 582p.

8. Ivar Jacobson, M. Griss, and P. Jonsson, Software Reuse—Architecture, Process and Organization for Business
Success, Harlow, England, AWL, 1997.

9. Philippe Kruchten, The 4+1 View Model of Architecture, IEEE Software, 12 (6), November 1995, IEEE, pp.42-
50.

10. Philippe Kruchten, A Rational Development Process, CrossTalk, 9 (7), STSC, Hill AFB, UT, pp.11-16.

11. Ivar Jacobson, Grady Booch, and Jim Rumbaugh, Unified Software Development Process, Addison-Wesley,
1999.

12. Grady Booch, Jim Rumbaugh, and Ivar Jacobson, Unified Modeling Language—User’s Guide, Addison-Wesley,
1999.

13. Philippe Kruchten, Rational Unified Process—An Introduction, Addison-Wesley, 1999.

14. Walker Royce, Software Project Management  A Unified Framework, Addison-Wesley, 1998.

Dual Headquarters:
Rational Software
18880 Homestead Road
Cupertino, CA 95014
Tel: (408) 863-9900

Rational Software
20 Maguire Road
Lexington, MA 02421
Tel: (781) 676-2400

Toll-free: (800) 728-1212
E-mail: info@rational.com
Web: www.rational.com
International Locations: www.rational.com/worldwide

Rational, the Rational logo, Rational Unified Process, Rational Apex, Rational Rose, RequisitePro, ClearQuest,
ClearCase, Purify, Visual Quantify, Visual PureCoverage, PerformanceStudio, and SQA are trademarks or
registered trademarks of Rational Software Corporation in the United States and in other countries. Microsoft and
Microsoft Internet Explorer are trademarks or registered trademarks of Microsoft Corporation. Java is a registered
trademark of Sun Microsystems. All other names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies.

© Copyright 1998 Rational Software
Corporation. ALL RIGHTS RESERVED

