Coloquio del 29/02/2012

Análisis Numérico I (75.12) - Curso nro. 7

Ejercicio nro 1

a) Dada la igualdad $\pi = \int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}}$ intentar aproximar el valor de π utilizando cuadratura Gaussiana con 4 puntos. Los datos necesarios son:

$$x_i$$
 c_i
 ± 0.8611363116 0.3478548451
 ± 0.3399810436 0.6521451549

b) Aproximar el valor de $I = \int_{0}^{5} [x] \cdot dx$ (donde [x]=parte entera de x) mediante el método de los trapecios con n=3,5 y 7. Comparar con el verdadero valor.

Ejercicio nro 2

El modelo matemático de la dinámica demográfica de dos poblaciones antagónicas (modelo presa-predador) produjo el siguiente sistema de ecuaciones diferenciales ordinarias de primer orden:

$$\frac{dy_{1}(t)}{dt} = k_{1} \cdot y_{1}(t) - k_{2} \cdot y_{1}(t) \cdot y_{2}(t)$$

$$\frac{dy_{2}(t)}{dt} = k_{3} \cdot y_{1}(t) \cdot y_{2}(t) - k_{4} \cdot y_{2}(t)$$

Donde con $y_1(t)$ es la cantidad de presas en el tiempo t e $y_2(t)$ es la cantidad de predadores en el tiempo t.

a) Discretizar el sistema anterior usando el método de Runge-Kutta de orden 2:

$$w_{i+1} = w_i + \frac{h}{2} \cdot [f(t_i, w_i) + f(t_{i+1}, w_i + h \cdot f(t_i, w_i))]$$

b) Suponiendo $y_1(0) = 1000$, $y_2(0) = 500$, $k_1 = 3$, $k_2 = 0,002$, $k_3 = 0,0006$ y $k_4 = 0,5$, estimar la población para los tiempos t=1, 2 y 3. Usar h=1.