Primer parcial - Tema A - 29/05/2013

Primer Cuatrimestre 2013

Análisis Numérico I - Curso nro. 6

Ejercicio nro. 1

Utilice aritmética de punto flotante con 4 dígitos de precisión y redondeo para todos los cálculos

Dado el siguiente sistema de ecuaciones lineales:

$$\begin{cases} 3,261x_1 + 0,001 = 162,5 \\ 10150x_1 + 1460x_2 = 11500 \end{cases}$$

- (a) Resuelva el sistema sin realizar ningún intercambio de filas. (10 puntos)
- (b) A partir de la solución obtenida en (a), realice un paso de refinamiento iterativo. (15 puntos)
- (c) Determine si el sistema está bien condicionado indicando si es factible obtener una estimación del número de condición de la matriz del sistema. (5 puntos)
- (d) Extraiga conclusiones con relación a las soluciones obtenidas. (5 puntos)

Escriba todos los resultados tal como los obtiene en la calculadora y luego de aplicar la grilla. Es parte de la evaluación.

Ejercicio nro. 2

La ecuación $e^x = 2 - 3x$ tiene una raíz α tal que $0 < \alpha < 0.5$

(a) A partir de la siguiente expresión:

$$x = \frac{2 - e^x}{3}$$

- Encuentre α mediante el método de punto fijo con un error menor que 10^{-5} , ilustrando el método paso a paso. (5 puntos)
- Analice el comportamiento del método a partir de las condiciones del Teorema de Punto Fijo. (10 puntos)
- (b) Escriba la ecuación en la forma f(x) = 0 y aplique el método de Newton-Raphson para hallar α con un error menor que 10^{-5} . (10 puntos)
- (c) Extraiga conclusiones relacionando los resultados obtenidos con los conceptos teóricos. (10 puntos).

Ejercicio nro. 3

Dados los siguientes puntos:

x	1,0	1,3	1,6	1,9	2,2
f(x)	0,7651977	0.6200860	0,4554022	0,2818186	0,1103623

- (a) Calcule el polinomio interpolador de Newton que interpola a f(x). (15 puntos)
- (b) Use dicho polinomio para aproximar f(1,5). (5 puntos)
- (c) Determine el grado del polinomio interpolador de Lagrange para obtener la aproximación del punto anterior. (10 puntos)