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Chapter 1

Transport phenomena

1.1 Mathematical introduction

An important relation is: if X is a quantity of a volume element which travels from position 7 to
7+ dr in a time dt, the total differential dX is then given by:

dX—a_Xd _|_8_Xd _|_8_Xd _|_8_th:>d_X—8_X +6_X _|_6X _|_8_X
= or By 9z ot at ~ ar T ey T T e
dX _ 0X

This results in general to:

dt ot

From this follows that also holds: % / / Xd*V = % / / Xd*V + # X(7-7)d?A

where the volume V is surrounded by surface A. Some properties of the V operator are:

div(¢t) = ¢divd + gradeg - ¥ rot(¢7) = ¢rotd + (grade) x ¢ rot gradg = 0
div(@ x ¥') =¥ - (rot@) — @ - (rot¥’)  rot rotv’ = grad dive — V¥ div rotv =0
div gradg = V2¢ V25 = (V2uy, Vg, V203)

Here, ¥'is an arbitrary vector field and ¢ an arbitrary scalar field. Some important integral theorems
o Gauss: # (7-7)d*A // (divd)d*V

Stokes for a scalar field: ]{((j) - €)ds = //(ﬁ x grade)d? A

Stokes for a vector field: 7{(17 éy)ds = //(rotﬁ- ii)d*A

This results in: # (rot@ - 71 )d*A =0

Ostrogradsky: # (7 x 7)d2A / / / (rot7)d> A
fomaa— [[] @aaoey

Here, the orientable surface [[ d?A is limited by the Jordan curve § ds.

1.2 Conservation laws

On a volume work two types of forces:
1. The force fé on each volume element. For gravity holds: f(; = og.

2. Surface forces working only on the margins: . For these holds: ¢ = 7 T, where T is the stress
tensor.



T can be split in a part pl representing the normal tensions and a part T’ representing the shear
stresses: T = T + pl, where | is the unit tensor. When viscous aspects can be ignored holds:
divT= —gradp.

When the flow velocity is ¥ at position 7 holds on position 7+ di:
o(dr) = d(F) + dr - (grad?d)
—_——

translation  rotation, deformation, dilatation

The quantity L:=grad? can be split in a symmetric part D and an antisymmetric part W. L =D+ W

with 1/0 0 1/0 0
V; U, V; U
Di' = = ! J [/17144 = — L J
J 2 <8$J + 8371) ’ 2 <6$CJ 8,@,)

When the rotation or vorticity & = rotv is introduced holds: W;; = %aijkwk. & represents the local

rotation velocity: dr-W = %w x dr.

For a Newtonian liquid holds: T' = 2nD. Here, 7 is the dynamical viscosity. This is related to the

shear stress 7 by:
Bvi

- n8$J

Tij
For compressible media can be stated: T' = (1/divé )l + 2nD. From equating the thermodynamical

and mechanical pressure it follows: 3n’ + 2n = 0. If the viscosity is constant holds: div(2D) =
V2§ + grad divd.

The conservation laws for mass, momentum and energy for continuous media can be written in both
integral and differential form. They are:

Integral notation:
1. Conservation of mass: % /// od*V + # o(v-7)d*A =0

2. Conservation of momentum: %/// 0Td®V + ﬁ ot(7- 7 )d*A = /// fod®*V + #ﬁ -Td*A

3. Conservation of torque: %/// o(F x ¥)d*V + # o(F x ¥)(¥- 7 )d*A =

///Fx ﬁ)d3V+#F>< it Td*>A
: 0 1,2 3 1,2 = =\ j2
4. Conservation of energy: pw (zv° +e)od’V + (] (5v° +e)o(v-7i)d*A =
—ﬁ(“~ﬁ)d2A+///(5‘ﬁ))d3V+ﬁ(z7~ﬁ T)d>A
Differential notation:

0
1. Conservation of mass: > + div - (07) =0

ot
. 817 — — rd . r . /
2. Conservation of momentum: QE + (00 - V)0 = fo+divT = fo — gradp + divT
d d d
3. Conservation of energy: QT—S = Q—e _bae —divg+ T :D

at ~ %dt ot



Here, e is the internal energy per unit of mass E/m and s is the entropy per unit of mass S/m.
q¢ = —kVT is the heat flow. Further holds:

_ 9B _ oe _0FE Qe
P="%9v = 910 0 T T 85 os

Oe oh
CV = <81—'>V and Cp = (M)p

with h = H/m the enthalpy per unit of mass.

SO

From this one can derive the Nawier-Stokes equations for an incompressible, viscous and heat-
conducting medium:

divi = 0
ov . . . 2
05, +0o(0-V)U = of —gradp +nV=0
oT B )
QCE-FQC(U'V)T = kVT+2nD:D

with C' the thermal heat capacity. The force F on an object within a flow, when viscous effects are
limited to the boundary layer, can be obtained using the momentum law. If a surface A surrounds
the object outside the boundary layer holds:

Fe— # [pi + 00(@ - 71 )]d2 A

Integral notation for a non inertial reference:

1. Conservation of mass: —/// Qd3V+# (W -71)d*A
2. Conservation of momentum: T /// 0Cd*V + ﬂ of(W - 7 )d* A + Q x /// ped3V =
///fod?’V—i—ﬂﬁTdQA

Where ¢= 7+ @ + Q x 7. & Absolute velocity; ¥: Frame of reference velocity; w: Relative velocity;
Q: Frame of reference angular velocity;

1.3 Bernoulli’s equations

Starting with the momentum equation one can find for a non-viscous medium for stationary flows,
with

(V- grad)v = 2grad( 3 + (rot?) x ¥
and the potential equation § = —grad(gh) th

%112 + gh + / ?p = constant along a streamline

For compressible flows holds: 1 v? + gh + p/o =constant along a line of flow. If also holds roti = 0
and the entropy is equal on each streamhne holds v2 + gh + [dp/o =constant everywhere. For
incompressible flows this becomes: 21} + gh + p/ Q =constant everywhere. For ideal gases with
constant C,, and Cy holds, with v = C,,/Cly:

2
C
—|— LE %1)2 + 1 = constant

—1o v —
With a velocity potential defined by ¥ = grad¢ holds for instationary flows:

0 d
—¢ + 1112 +gh + / @ _ constant everywhere
%

ot



1.4 Characterising of flows by dimensionless numbers

The advantage of dimensionless numbers is that they make model experiments possible: one has
to make the dimensionless numbers which are important for the specific experiment equal for both
model and the real situation. One can also deduce functional equalities without solving the differential
equations. Some dimensionless numbers are given by:

2

Strouhal: Sr = % Froude: Fr= v Mach: Ma = Y

v gL c

L L

Fourier: Fo = a4 Péclet: Pe = et Reynolds: Re = ad

wlL? a v

v Lo V2
Prandtl: Pr= - Nusselt: Nu= — Eckert: Ec =

a K cAT

Here, v = n/o is the kinematic viscosity, ¢ is the speed of sound and L is a characteristic length of
the system. « follows from the equation for heat transport k9,1 = o AT and a = £/ oc is the thermal
diffusion coefficient.

These numbers can be interpreted as follows:
e Re: (stationary inertial forces)/(viscous forces)
e Sr: (non-stationary inertial forces)/(stationary inertial forces)
e Fr: (stationary inertial forces)/(gravity)
e Fo: (heat conductance)/(non-stationary change in enthalpy)
e Pe: (convective heat transport)/(heat conductance)
e Ec: (

viscous dissipation)/(convective heat transport)

e Ma: (velocity)/(speed of sound): objects moving faster than approximately Ma = 0,8 produce
shockwaves which propagate with an angle 6 with the velocity of the object. For this angle
holds Ma= 1/ arctan(6).

e Pr and Nu are related to specific materials.

Now, the dimensionless Navier-Stokes equation becomes, with ' = x/L, v’ = ¢/V, grad’ = Lgrad,
V7?2 =[2V? and t' = tw:

= v/Q =/
V)T = —gradp+ £+

1.5 Tube flows

For tube flows holds: they are laminar if Re< 2300 with dimension of length the diameter of the
tube, and turbulent if Re is larger. For an incompressible laminar flow through a straight, circular
tube holds for the velocity profile:

1 dp

__ L aP 2
U(T) - 4,'7 dm (R r )
R
mdp 4
For the volume flow holds: &y = [ v(r)27rdr = —— —R
8n dx
0

The entrance length L. is given by:

1. 500 < Rep < 2300: L./2R = 0.056Rep



2. Re > 2300: L./2R ~ 50
4R3aﬁd_p
3 dx

For flows at a small Re holds: Vp = V2% and divi' = 0. For the total force on a sphere with radius
R in a flow then holds: F = 67mnRv. For large Re holds for the force on a surface A: F = %CwAQUQ.

For gas transport at low pressures (Knudsen-gas) holds: @y =

1.6 Potential theory

The circulation T is defined as: T' = 7{(17 € )ds = //(rotz?) SAd*A = //(J -i)d*A
For non viscous media, if p = p(p) and all forces are conservative, Kelvin’s theorem can be derived:

ar

= =0
dt

For rotationless flows a velocity potential v = grad¢ can be introduced. In the incompressible case
follows from conservation of mass V2¢ = 0. For a 2-dimensional flow a flow function ¢ (z,y) can be
defined: with ® 45 the amount of liquid flowing through a curve s between the points A and B:

B B
Pup = /(17~ﬁ)d5 = /(’Umdy—vydos)
A A

and the definitions v, = 0v/dy, vy = —0Y/0x holds: ®4p = ¥(B) — 1(A). In general holds:

Pu v
ox?2  oy2 7
In polar coordinates holds:
_1% _ 99 __ W _10¢
Ur_raﬂ_ﬁr’ve_ or 1o

For source flows with power @ in (z,y) = (0,0) holds: ¢ = 22 In(r) so that v, = Q/27r, vy = 0.
™

For a dipole of strength @ in * = a and strength —@Q in = —a follows from superposition: ¢ =
—Qaaz/27r7“2 where Qa is the dipole strength. For a vortex holds: ¢ = T'6/2x.

If an object is surrounded by an uniform main flow with v = vé, and such a large Re that viscous
effects are limited to the boundary layer holds: F,, = 0 and F,, = —pIl'v. The statement that F, = 0is
d’Alembert’s paradox and originates from the neglection of viscous effects. The lift F), is also created
by 1 because I' # 0 due to viscous effects. Henxe rotating bodies also create a force perpendicular to
their direction of motion: the Magnus effect.

1.7 Boundary layers

1.7.1 Flow boundary layers

If for the thickness of the boundary layer holds: § < L holds: § =~ L/v/Re. With vy the velocity
of the main flow it follows for the velocity v, L the surface: vy ~ dv. Blasius’ equation for the
boundary layer is, with v, /ve = f(y/d): 2f" + ff” = 0 with boundary conditions f(0) = f/(0) =0
f'(00) = 1. From this follows: Cy = 0.664 Re; /2.

dv 1

d
The momentum theorem of Von Karman for the boundary layer is: E(ﬁvz) + (5*0% =



where the displacement thickness ¢*v and the momentum thickness Yv? are given by:

W = /(v — V) dy , v = /(v —v,)dy and 19 = ——
0 0

Ovy d
The boundary layer is released from the surface if (%) = 0. This is equivalent with d_p =
Y/ y=0 €z
120
EE

1.7.2 Temperature boundary layers

If the thickness of the temperature boundary layer o7 < L holds: 1. If Pr < 1: §/é1 ~ v/Pr.
2. If Pr> 1: §/67 ~ V/Pr.

1.8 Heat conductance

For non-stationairy heat conductance in one dimension without flow holds:
o  k 0T
ot oc 0z

where @ is a source term. If ® = 0 the solutions for harmonic oscillations at x = 0 are:

T T _ <_£)Cos(wt_£)
Tome — T CP\7D D

with D = /2k/wec. At x = 7D the temperature variation is in anti-phase with the surface. The
one-dimensional solution at ® = 0 is

1 x?
T(.’E,t) = mexp _M

This is mathematical equivalent to the diffusion problem:

on

=DV?n+P-—A
5 Ven +

where P is the production of and A the discharge of particles. The flow density J = —DVn.

1.9 Turbulence

The time scale of turbulent velocity variations 7y is of the order of: 7, = 7V Re/Ma2 with 7 the
molecular time scale. For the velocity of the particles holds: v(t) = (v) + v'(¢) with (v/(¢)) = 0. The
Navier-Stokes equation now becomes:

o \Y divS
gt” +((7) V) (T) = —% UV (F) + %
where Sg;; = —o (viv;) is the turbulent stress tensor. Boussinesq’s assumption is: 7;; = —o (vjv}).

It is stated that, analogous to Newtonian media: Sg = 2914 (D). Near a boundary holds: v; = 0, far
away of a boundary holds: 1, ~ vRe.



1.10 Self organization

d 0
For a (semi) two-dimensional flow holds: d—j = a—t + J(w, ) = vV3w
With J(w,) the Jacobian. So if v = 0, w is conserved. Further, the kinetic energy/mA and the
enstrofy V are conserved: with ¢ =V x (kv)
E ~ (V)2 ~ /S(k,t)dk = constant , V ~ (VZ9)? ~ /k25(k,t)dk = constant
0 0

From this follows that in a two-dimensional flow the energy flux goes towards large values of k: larger
structures become larger at the expanse of smaller ones. In three-dimensional flows the situation is

just the opposite.



The V-operator

In cartesian coordinates (z,y, z) holds:

- 0 0 0 _ af_, of .  of
= 5 €z a_ 5 62 > d = € a_ a_ 6z
\Y% 3 € +ayey+aze gradf = Vf B +8yey+8ze
da, da, da Pf [ OPf | O*f
divaev.g= 2% 9% z 2, 071 O] 07
va=V-d x Oy 0z V= Ox? Jr(‘3y + 022
. a_ . (Oa, Bay da, Oa,\ _ Oay, Oagz\
rota-an-(ay 3 > +<8,z %>6y+(%_8y)62
In cylinder coordinates (r, ¢, z) holds
- 0, 10, - f 18f_, of .,
V_ar T+ragoew+azez ’ gradf_a rty rdp ot 5
.. Oa. a.  10a,  Oa, 9 0%f 10f 10%f O°*f
= e "o VI T T e T T o
ot @ — laaz_aaw oy 8(1,,_8(12 P %_'_a_@_l(“)ar e
S \r oy 0z 0z or ) ¥ or r rop) ”
In spherical coordinates (7,6, ¢) holds:
- 1 1
¢ L 0,10, 0,

or T + rsin@%%
8f_, 18f_, 1 9f,

gradf = e T 5% T rsng 0 ”

div @ %ir 2? 71«%(190+rt6;(119+rsiln9%

rot @ = (%%—'_rtﬁle_rsian%—?j)g (rsin@g?;‘_%_%>€e+
(5525

vep o= 2fy2of 1oy 1 of, 1 9

or2 " ror 12002 " r2tan 00 ' 12sin%6 (9—502

General orthonormal curvelinear coordinates (u, v, w) can be obtained from cartesian coordinates by
the transformation & = #(u, v, w). The unit vectors are then given by:

L 197 10z

- 1 0%

eu_h_la_u’ ev_h_Q%’ €w—h—36—w
where the factors h; set the norm to 1. Then holds:

tor. 1oL 1of,

h1 8u Cu hQ 81} v h38w bt

oL 1 0

divd = Toiial (8 (hohszay) + ( shiay) + . h1h2aw))

o 1 8(h3aw hgav hlau h3a,w) N
e = hzhg( v h3h1 T ou )T
1 O(haay) B hlau
hlhg 8u

.. 1 [0 hghgaf hyhy Of hahs Of
Vi = wahs lae \ iy o +a he Ov +a hs Ow

gradf =




Basic units

The SI units

Derived units with special names

|| Quantity | Unit Sym. || || Quantity | Unit Sym. Derivation ||
Length metre m Frequency hertz Hz s71
Mass kilogram kg Force newton N kg -m - s2
Time second 8 Pressure pascal Pa N-m~2
Therm. temp. kelvin K Energy joule J N.m
Electr. current ampere A Power watt W J.s!
Luminous intens. | candela cd Charge coulomb C A-s
Amount of subst. | mol mol EL Potential volt \Y W.A-1L
. El. Capacitance | farad F c.-v!
Extra units El. Resistance ohm Q VATl
Plane angle radian rad El Conductance | siemens S AVt
solid angle sterradian  sr Mag. flux weber Wb Vs
Mag. flux density | tesla T Wb -m™2
Inductance henry H Wb - A1
Luminous flux lumen Im cd - sr
Illuminance lux Ix Im - m—2
Activity bequerel Bq 51
Absorbed dose gray Gy J-kg™!
Dose equivalent sievert Sv J-kg!
Prefixes
yotta Y 10% | giga G 10° | deci d 107! | pico p 10712
zetta Z 10! | mega M 10 | centi ¢ 1072 | femto f 107!
exa E 10'8 | kilo k 103 | milli m 1073 | atto a 10718
peta P 10'® | hecto h 102 | micro pu 1076 | zepto z 1072!
tera T 102 | deca da 10 |nano n 1072 | yocto y 10724

Lo anterior es un extracto del formulario escrito por Johan Wevers (johanw@uulcan.xzs4all.nl).
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