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Chapter 1

Transport phenomena

1.1 Mathematical introduction

An important relation is: if X is a quantity of a volume element which travels from position �r to
�r + d�r in a time dt, the total differential dX is then given by:

dX =
∂X

∂x
dx +

∂X

∂y
dy +

∂X

∂z
dz +

∂X

∂t
dt ⇒ dX

dt
=

∂X

∂x
vx +

∂X

∂y
vy +

∂X

∂z
vz +

∂X

∂t

This results in general to:
dX

dt
=

∂X

∂t
+ (�v · ∇)X .

From this follows that also holds:
d

dt

∫∫∫
Xd3V =

∂

∂t

∫∫∫
Xd3V +

∫∫
© X(�v · �n )d2A

where the volume V is surrounded by surface A. Some properties of the ∇ operator are:

div(φ�v ) = φdiv�v + gradφ · �v rot(φ�v ) = φrot�v + (gradφ) × �v rot gradφ = �0
div(�u × �v ) = �v · (rot�u ) − �u · (rot�v ) rot rot�v = grad div�v −∇2�v div rot�v = 0
div gradφ = ∇2φ ∇2�v ≡ (∇2v1,∇2v2,∇2v3)

Here, �v is an arbitrary vector field and φ an arbitrary scalar field. Some important integral theorems
are:

Gauss:
∫∫
© (�v · �n )d2A =

∫∫∫
(div�v )d3V

Stokes for a scalar field:
∮

(φ · �et)ds =
∫∫

(�n × gradφ)d2A

Stokes for a vector field:
∮

(�v · �et)ds =
∫∫

(rot�v · �n )d2A

This results in:
∫∫
© (rot�v · �n )d2A = 0

Ostrogradsky:
∫∫
© (�n × �v )d2A =

∫∫∫
(rot�v )d3A

∫∫
© (φ�n )d2A =

∫∫∫
(gradφ)d3V

Here, the orientable surface
∫∫

d2A is limited by the Jordan curve
∮

ds.

1.2 Conservation laws

On a volume work two types of forces:

1. The force �f0 on each volume element. For gravity holds: �f0 = ��g.

2. Surface forces working only on the margins: �t. For these holds: �t = �n T, where T is the stress
tensor.
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T can be split in a part pI representing the normal tensions and a part T′ representing the shear
stresses: T = T′ + pI, where I is the unit tensor. When viscous aspects can be ignored holds:
divT= −gradp.

When the flow velocity is �v at position �r holds on position �r + d�r:

�v(d�r ) = �v(�r )︸︷︷︸
translation

+ d�r · (grad�v )︸ ︷︷ ︸
rotation, deformation, dilatation

The quantity L:=grad�v can be split in a symmetric part D and an antisymmetric part W. L = D + W
with

Dij :=
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
, Wij :=

1
2

(
∂vi

∂xj
− ∂vj

∂xi

)

When the rotation or vorticity �ω = rot�v is introduced holds: Wij = 1
2εijkωk. �ω represents the local

rotation velocity: �dr · W = 1
2ω × �dr.

For a Newtonian liquid holds: T′ = 2ηD. Here, η is the dynamical viscosity. This is related to the
shear stress τ by:

τij = η
∂vi

∂xj

For compressible media can be stated: T′ = (η′div�v )I + 2ηD. From equating the thermodynamical
and mechanical pressure it follows: 3η′ + 2η = 0. If the viscosity is constant holds: div(2D) =
∇2�v + grad div�v.

The conservation laws for mass, momentum and energy for continuous media can be written in both
integral and differential form. They are:

Integral notation:

1. Conservation of mass:
∂

∂t

∫∫∫
�d3V +

∫∫
© �(�v · �n )d2A = 0

2. Conservation of momentum:
∂

∂t

∫∫∫
��vd3V +

∫∫
© ��v(�v · �n )d2A =

∫∫∫
f0d

3V +
∫∫
© �n · Td2A

3. Conservation of torque:
∂

∂t

∫∫∫
�(�r × �v)d3V +

∫∫
© �(�r × �v)(�v · �n )d2A =

∫∫∫
�r × �f0d

3V +
∫∫
© �r × �n · Td2A

4. Conservation of energy:
∂

∂t

∫∫∫
( 1
2v2 + e)�d3V +

∫∫
© ( 1

2v2 + e)�(�v · �n )d2A =

−
∫∫
© (�q · �n )d2A +

∫∫∫
(�v · �f0)d3V +

∫∫
© (�v · �n T)d2A

Differential notation:

1. Conservation of mass:
∂�

∂t
+ div · (��v ) = 0

2. Conservation of momentum: �
∂�v

∂t
+ (��v · ∇)�v = �f0 + divT = �f0 − gradp + divT′

3. Conservation of energy: �T
ds

dt
= �

de

dt
− p

�

d�

dt
= −div�q + T′ : D
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Here, e is the internal energy per unit of mass E/m and s is the entropy per unit of mass S/m.
�q = −κ�∇T is the heat flow. Further holds:

p = −∂E

∂V
= − ∂e

∂1/�
, T =

∂E

∂S
=

∂e

∂s

so

CV =
(

∂e

∂T

)
V

and Cp =
(

∂h

∂T

)
p

with h = H/m the enthalpy per unit of mass.

From this one can derive the Navier-Stokes equations for an incompressible, viscous and heat-
conducting medium:

div�v = 0

�
∂�v

∂t
+ �(�v · ∇)�v = ��g − gradp + η∇2�v

�C
∂T

∂t
+ �C(�v · ∇)T = κ∇2T + 2ηD : D

with C the thermal heat capacity. The force �F on an object within a flow, when viscous effects are
limited to the boundary layer, can be obtained using the momentum law. If a surface A surrounds
the object outside the boundary layer holds:

�F = −
∫∫
© [p�n + ��v(�v · �n )]d2A

Integral notation for a non inertial reference:

1. Conservation of mass:
∂

∂t

∫∫∫
�d3V +

∫∫
© �(−→w · �n )d2A = 0

2. Conservation of momentum:
∂

∂t

∫∫∫
��cd3V +

∫∫
© ��c(�w · �n )d2A + Ω ×

∫∫∫
ρ�cd3V =

∫∫∫
f0d

3V +
∫∫
© �n · Td2A

Where �c = �v + �w + �Ω × �r. �c: Absolute velocity; �v: Frame of reference velocity; �w: Relative velocity;
�Ω: Frame of reference angular velocity;

1.3 Bernoulli’s equations

Starting with the momentum equation one can find for a non-viscous medium for stationary flows,
with

(�v · grad)�v = 1
2grad(v2) + (rot�v ) × �v

and the potential equation �g = −grad(gh) that:

1
2v2 + gh +

∫
dp

�
= constant along a streamline

For compressible flows holds: 1
2v2 + gh + p/� =constant along a line of flow. If also holds rot�v = 0

and the entropy is equal on each streamline holds 1
2v2 + gh +

∫
dp/� =constant everywhere. For

incompressible flows this becomes: 1
2v2 + gh + p/� =constant everywhere. For ideal gases with

constant Cp and CV holds, with γ = Cp/CV :

1
2v2 +

γ

γ − 1
p

�
= 1

2v2 +
c2

γ − 1
= constant

With a velocity potential defined by �v = gradφ holds for instationary flows:

∂φ

∂t
+ 1

2v2 + gh +
∫

dp

�
= constant everywhere
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1.4 Characterising of flows by dimensionless numbers

The advantage of dimensionless numbers is that they make model experiments possible: one has
to make the dimensionless numbers which are important for the specific experiment equal for both
model and the real situation. One can also deduce functional equalities without solving the differential
equations. Some dimensionless numbers are given by:

Strouhal: Sr =
ωL

v
Froude: Fr =

v2

gL
Mach: Ma =

v

c

Fourier: Fo =
a

ωL2
Péclet: Pe =

vL

a
Reynolds: Re =

vL

ν

Prandtl: Pr =
ν

a
Nusselt: Nu =

Lα

κ
Eckert: Ec =

v2

c∆T

Here, ν = η/� is the kinematic viscosity, c is the speed of sound and L is a characteristic length of
the system. α follows from the equation for heat transport κ∂yT = α∆T and a = κ/�c is the thermal
diffusion coefficient.

These numbers can be interpreted as follows:

• Re: (stationary inertial forces)/(viscous forces)

• Sr: (non-stationary inertial forces)/(stationary inertial forces)

• Fr: (stationary inertial forces)/(gravity)

• Fo: (heat conductance)/(non-stationary change in enthalpy)

• Pe: (convective heat transport)/(heat conductance)

• Ec: (viscous dissipation)/(convective heat transport)

• Ma: (velocity)/(speed of sound): objects moving faster than approximately Ma = 0,8 produce
shockwaves which propagate with an angle θ with the velocity of the object. For this angle
holds Ma= 1/ arctan(θ).

• Pr and Nu are related to specific materials.

Now, the dimensionless Navier-Stokes equation becomes, with x′ = x/L, �v ′ = �v/V , grad′ = Lgrad,
∇′2 = L2∇2 and t′ = tω:

Sr
∂�v ′

∂t′
+ (�v ′ · ∇′)�v ′ = −grad′p +

�g

Fr
+

∇′2�v ′

Re

1.5 Tube flows

For tube flows holds: they are laminar if Re< 2300 with dimension of length the diameter of the
tube, and turbulent if Re is larger. For an incompressible laminar flow through a straight, circular
tube holds for the velocity profile:

v(r) = − 1
4η

dp

dx
(R2 − r2)

For the volume flow holds: ΦV =

R∫
0

v(r)2πrdr = − π

8η

dp

dx
R4

The entrance length Le is given by:

1. 500 < ReD < 2300: Le/2R = 0.056ReD
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2. Re > 2300: Le/2R ≈ 50

For gas transport at low pressures (Knudsen-gas) holds: ΦV =
4R3α

√
π

3
dp

dx

For flows at a small Re holds: ∇p = η∇2�v and div�v = 0. For the total force on a sphere with radius
R in a flow then holds: F = 6πηRv. For large Re holds for the force on a surface A: F = 1

2CW A�v2.

1.6 Potential theory

The circulation Γ is defined as: Γ =
∮

(�v · �et)ds =
∫∫

(rot�v ) · �nd2A =
∫∫

(�ω · �n )d2A

For non viscous media, if p = p(�) and all forces are conservative, Kelvin’s theorem can be derived:

dΓ
dt

= 0

For rotationless flows a velocity potential �v = gradφ can be introduced. In the incompressible case
follows from conservation of mass ∇2φ = 0. For a 2-dimensional flow a flow function ψ(x, y) can be
defined: with ΦAB the amount of liquid flowing through a curve s between the points A and B:

ΦAB =

B∫
A

(�v · �n )ds =

B∫
A

(vxdy − vydx)

and the definitions vx = ∂ψ/∂y, vy = −∂ψ/∂x holds: ΦAB = ψ(B) − ψ(A). In general holds:

∂2ψ

∂x2
+

∂2ψ

∂y2
= −ωz

In polar coordinates holds:

vr =
1
r

∂ψ

∂θ
=

∂φ

∂r
, vθ = −∂ψ

∂r
=

1
r

∂φ

∂θ

For source flows with power Q in (x, y) = (0, 0) holds: φ =
Q

2π
ln(r) so that vr = Q/2πr, vθ = 0.

For a dipole of strength Q in x = a and strength −Q in x = −a follows from superposition: φ =
−Qax/2πr2 where Qa is the dipole strength. For a vortex holds: φ = Γθ/2π.

If an object is surrounded by an uniform main flow with �v = v�ex and such a large Re that viscous
effects are limited to the boundary layer holds: Fx = 0 and Fy = −�Γv. The statement that Fx = 0 is
d’Alembert’s paradox and originates from the neglection of viscous effects. The lift Fy is also created
by η because Γ �= 0 due to viscous effects. Henxe rotating bodies also create a force perpendicular to
their direction of motion: the Magnus effect.

1.7 Boundary layers

1.7.1 Flow boundary layers

If for the thickness of the boundary layer holds: δ 	 L holds: δ ≈ L/
√

Re. With v∞ the velocity
of the main flow it follows for the velocity vy ⊥ the surface: vyL ≈ δv∞. Blasius’ equation for the
boundary layer is, with vy/v∞ = f(y/δ): 2f ′′′ + ff ′′ = 0 with boundary conditions f(0) = f ′(0) = 0,
f ′(∞) = 1. From this follows: CW = 0.664 Re−1/2

x .

The momentum theorem of Von Karman for the boundary layer is:
d

dx
(ϑv2) + δ∗v

dv

dx
=

τ0

�
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where the displacement thickness δ∗v and the momentum thickness ϑv2 are given by:

ϑv2 =

∞∫
0

(v − vx)vxdy , δ∗v =

∞∫
0

(v − vx)dy and τ0 = −η
∂vx

∂y

∣∣∣∣
y=0

The boundary layer is released from the surface if
(

∂vx

∂y

)
y=0

= 0. This is equivalent with
dp

dx
=

12ηv∞
δ2

.

1.7.2 Temperature boundary layers

If the thickness of the temperature boundary layer δT 	 L holds: 1. If Pr ≤ 1: δ/δT ≈ √
Pr.

2. If Pr 
 1: δ/δT ≈ 3
√

Pr.

1.8 Heat conductance

For non-stationairy heat conductance in one dimension without flow holds:

∂T

∂t
=

κ

�c

∂2T

∂x2
+ Φ

where Φ is a source term. If Φ = 0 the solutions for harmonic oscillations at x = 0 are:

T − T∞
Tmax − T∞

= exp
(
− x

D

)
cos

(
ωt − x

D

)

with D =
√

2κ/ω�c. At x = πD the temperature variation is in anti-phase with the surface. The
one-dimensional solution at Φ = 0 is

T (x, t) =
1

2
√

πat
exp

(
− x2

4at

)

This is mathematical equivalent to the diffusion problem:

∂n

∂t
= D∇2n + P − A

where P is the production of and A the discharge of particles. The flow density J = −D∇n.

1.9 Turbulence

The time scale of turbulent velocity variations τt is of the order of: τt = τ
√

Re/Ma2 with τ the
molecular time scale. For the velocity of the particles holds: v(t) = 〈v〉 + v′(t) with 〈v′(t)〉 = 0. The
Navier-Stokes equation now becomes:

∂ 〈�v 〉
∂t

+ (〈�v 〉 · ∇) 〈�v 〉 = −∇〈p〉
�

+ ν∇2 〈�v 〉 +
divSR

�

where SRij = −� 〈vivj〉 is the turbulent stress tensor. Boussinesq’s assumption is: τij = −�
〈
v′

iv
′
j

〉
.

It is stated that, analogous to Newtonian media: SR = 2�νt 〈D〉. Near a boundary holds: νt = 0, far
away of a boundary holds: νt ≈ νRe.
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1.10 Self organization

For a (semi) two-dimensional flow holds:
dω

dt
=

∂ω

∂t
+ J(ω, ψ) = ν∇2ω

With J(ω, ψ) the Jacobian. So if ν = 0, ω is conserved. Further, the kinetic energy/mA and the
enstrofy V are conserved: with �v = ∇× (�kψ)

E ∼ (∇ψ)2 ∼
∞∫
0

E(k, t)dk = constant , V ∼ (∇2ψ)2 ∼
∞∫
0

k2E(k, t)dk = constant

From this follows that in a two-dimensional flow the energy flux goes towards large values of k: larger
structures become larger at the expanse of smaller ones. In three-dimensional flows the situation is
just the opposite.
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The ∇-operator

In cartesian coordinates (x, y, z) holds:

�∇ =
∂

∂x
�ex +

∂

∂y
�ey +

∂

∂z
�ez , gradf = �∇f =

∂f

∂x
�ex +

∂f

∂y
�ey +

∂f

∂z
�ez

div �a = �∇ · �a =
∂ax

∂x
+

∂ay

∂y
+

∂az

∂z
, ∇2f =

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

rot �a = �∇× �a =
(

∂az

∂y
− ∂ay

∂z

)
�ex +

(
∂ax

∂z
− ∂az

∂x

)
�ey +

(
∂ay

∂x
− ∂ax

∂y

)
�ez

In cylinder coordinates (r, ϕ, z) holds:

�∇ =
∂

∂r
�er +

1
r

∂

∂ϕ
�eϕ +

∂

∂z
�ez , gradf =

∂f

∂r
�er +

1
r

∂f

∂ϕ
�eϕ +

∂f

∂z
�ez

div �a =
∂ar

∂r
+

ar

r
+

1
r

∂aϕ

∂ϕ
+

∂az

∂z
, ∇2f =

∂2f

∂r2
+

1
r

∂f

∂r
+

1
r2

∂2f

∂ϕ2
+

∂2f

∂z2

rot �a =
(

1
r

∂az

∂ϕ
− ∂aϕ

∂z

)
�er +

(
∂ar

∂z
− ∂az

∂r

)
�eϕ +

(
∂aϕ

∂r
+

aϕ

r
− 1

r

∂ar

∂ϕ

)
�ez

In spherical coordinates (r, θ, ϕ) holds:

�∇ =
∂

∂r
�er +

1
r

∂

∂θ
�eθ +

1
r sin θ

∂

∂ϕ
�eϕ

gradf =
∂f

∂r
�er +

1
r

∂f

∂θ
�eθ +

1
r sin θ

∂f

∂ϕ
�eϕ

div �a =
∂ar

∂r
+

2ar

r
+

1
r

∂aθ

∂θ
+

aθ

r tan θ
+

1
r sin θ

∂aϕ

∂ϕ

rot �a =
(

1
r

∂aϕ

∂θ
+

aθ

r tan θ
− 1

r sin θ

∂aθ

∂ϕ

)
�er +

(
1

r sin θ

∂ar

∂ϕ
− ∂aϕ

∂r
− aϕ

r

)
�eθ +

(
∂aθ

∂r
+

aθ

r
− 1

r

∂ar

∂θ

)
�eϕ

∇2f =
∂2f

∂r2
+

2
r

∂f

∂r
+

1
r2

∂2f

∂θ2
+

1
r2 tan θ

∂f

∂θ
+

1
r2 sin2 θ

∂2f

∂ϕ2

General orthonormal curvelinear coordinates (u, v, w) can be obtained from cartesian coordinates by
the transformation �x = �x(u, v, w). The unit vectors are then given by:

�eu =
1
h1

∂�x

∂u
, �ev =

1
h2

∂�x

∂v
, �ew =

1
h3

∂�x

∂w

where the factors hi set the norm to 1. Then holds:

gradf =
1
h1

∂f

∂u
�eu +

1
h2

∂f

∂v
�ev +

1
h3

∂f

∂w
�ew

div �a =
1

h1h2h3

(
∂

∂u
(h2h3au) +

∂

∂v
(h3h1av) +

∂

∂w
(h1h2aw)

)

rot �a =
1

h2h3

(
∂(h3aw)

∂v
− ∂(h2av)

∂w

)
�eu +

1
h3h1

(
∂(h1au)

∂w
− ∂(h3aw)

∂u

)
�ev +

1
h1h2

(
∂(h2av)

∂u
− ∂(h1au)

∂v

)
�ew

∇2f =
1

h1h2h3

[
∂

∂u

(
h2h3

h1

∂f

∂u

)
+

∂

∂v

(
h3h1

h2

∂f

∂v

)
+

∂

∂w

(
h1h2

h3

∂f

∂w

)]

8



The SI units

Basic units

Quantity Unit Sym.
Length metre m
Mass kilogram kg
Time second s
Therm. temp. kelvin K
Electr. current ampere A
Luminous intens. candela cd
Amount of subst. mol mol

Extra units

Plane angle radian rad
solid angle sterradian sr

Derived units with special names

Quantity Unit Sym. Derivation

Frequency hertz Hz s−1

Force newton N kg · m · s−2

Pressure pascal Pa N · m−2

Energy joule J N · m
Power watt W J · s−1

Charge coulomb C A · s
El. Potential volt V W · A−1

El. Capacitance farad F C · V−1

El. Resistance ohm Ω V · A−1

El. Conductance siemens S A · V−1

Mag. flux weber Wb V · s
Mag. flux density tesla T Wb · m−2

Inductance henry H Wb · A−1

Luminous flux lumen lm cd · sr
Illuminance lux lx lm · m−2

Activity bequerel Bq s−1

Absorbed dose gray Gy J · kg−1

Dose equivalent sievert Sv J · kg−1

Prefixes

yotta Y 1024 giga G 109 deci d 10−1 pico p 10−12

zetta Z 1021 mega M 106 centi c 10−2 femto f 10−15

exa E 1018 kilo k 103 milli m 10−3 atto a 10−18

peta P 1015 hecto h 102 micro µ 10−6 zepto z 10−21

tera T 1012 deca da 10 nano n 10−9 yocto y 10−24

Lo anterior es un extracto del formulario escrito por Johan Wevers (johanw@vulcan.xs4all.nl). El
texto completo se halla en: http://www.xs4all.nl/ johanw/contents.html
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