FÍSICA I CURSO 06; PARTE A PARCIAL; SEGUNDO CUATR.2013 30.09.2013

(Realizar los diagramas de cuerpo libre e indicar claramente los sistemas referenciales y sistemas coordenados. En todos los casos nos encontramos próximos a la Tierra, g=10m/s²)

APELLIDO Y NON	ABRES (en todas las	hoias):			
PADRÓN:					
NÚMERO DE HO	IAS ENTREGADAS:				
PARA EL DOCENTE CORRECTOR:					
1.a			2.a (A)	2.b	Nota (a)
1) La partícula M se mueve inicialmente por una vía horizontal con rozamiento μ, entre los puntos "A y B". Luego sube por una rampa sin roce, con forma de cuarto de circunferencia hasta "C" y de semicircunferencia hasta "D", ambas de radio R. Finalmente se					
desliza sin rozamie punto de máxima pedimos hallar:	ento por una via ho altura pasa con ur	rizontal. Se sabe o na velocidad de 0,	que por el M 5 m/s. Te M	$R=2 \text{ m}$ $\mu = 0,2$ $= 2 \text{ m}$ $= 2 \text{ m}$	

- a) Velocidad inicial de salida del punto "A".
- b) Ángulo correspondiente a punto "Q", donde se desprende de la vía.
- c) Vector velocidad en el punto "Q", y vector aceleración en el punto de máxima altura.
- 2) La señorita Luli se mueve según la siguiente ecuación horaria (unidades [m]y [s]): x= (5 t 2 t²) i (i; j: son versores cartesianos ortogonales). La señorita Jesy se mueve con velocidad angular constante 1,5 [s⁻¹], por una trayectoria circular de radio R= 2 m, sobre el mismo plano que Luli. Jesy para t=0 se mueve en dirección paralela al eje "X" y sentido positivo. Para los instantes en que Jesy tiene velocidad paralela al eje "Y" (solamente los dos primeros casos que ocurran) Te pedimos que halles:
- a) velocidad relativa de Jesy respecto de Luli.
- b) aceleración relativa de Jesy respecto de Luli. (indicar los vectores en un esquema)