Física III A - Guía Nº 4

Cuántica formal

- 1) Escriba y explique los postulados de la Teoría Cuántica.
- 2) Basándose en los postulados de la mecánica cuántica, obtenga los operadores asociados con las siguientes magnitudes físicas:
 - a) La posición.
 - b) La cantidad de movimiento.
 - c) La energía cinética.
 - d) La energía total.
 - e) El momento angular.
- 3) El estado de una partícula en un pozo infinito de longitud a está dado por

$$\Psi_n(x,t) = \varphi_n(x) e^{-i\frac{E_n}{\hbar}t}$$

donde

$$\varphi_n(x) = \sqrt{\frac{2}{a}} \sin\left(n\frac{\pi}{a}x\right)$$

- a) Calcular el valor medio de la energía, $\left\langle \hat{H} \right\rangle$.
- b) Calcular la dispersión de la energía, σ_H .
- c) ¿Que características tiene el estado?
- 4) El estado de un electrón en un pozo infinito de longitud $a=3\text{\AA}$ está dado por

$$\Psi(x,t) = c_1 \varphi_1(x) e^{-i\frac{E_1}{\hbar}t} + \frac{1}{\sqrt{3}} \varphi_2(x) e^{-i\frac{E_2}{\hbar}t}$$

donde

$$\varphi_n(x) = \sqrt{\frac{2}{a}} \sin\left(n\frac{\pi}{a}x\right)$$

- a) Calcular c_1 .
- **b)** Calcular el valor medio de la energía, $\langle \hat{H} \rangle$.
- c) Calcular la dispersión de la energía, σ_H .
- d) ¿Que características tiene el estado?
- 5) (Optativo) En la Teoría Cuántica el Principio de Incerteza entre dos magnitudes físicas (observables) A y B se expresa como

1

$$\sigma_A^2 \sigma_B^2 \ge \left(\frac{1}{2i} \left\langle \left[\hat{A}, \hat{B}\right] \right\rangle \right)^2$$

donde $\left[\hat{A},\hat{B}\right]=\hat{A}\hat{B}-\hat{B}\hat{A}$ es el conmutador entre \hat{A} y $\hat{B}.$

a) Exprese el Principio de Incerteza para x y p_x . Interprete.

- b) Exprese el Principio de Incerteza para x y p_y . Interprete.
- **6)** ¿Cuáles de las siguientes funciones son autofunciones del momento $\hat{p_x}$?

$$\begin{array}{lcl} \varphi\left(x\right) & = & A\sin\left(kx\right) \\ \varphi\left(x\right) & = & A\left[\cos\left(kx\right) + i\sin\left(kx\right)\right] \\ \varphi\left(x\right) & = & A\left[e^{ikx} + e^{-ikx}\right] \\ \varphi\left(x\right) & = & A\left[\cos\left(kx\right) + \sin\left(kx\right)\right] \\ \varphi\left(x\right) & = & Ae^{ik(x-a)} \\ \varphi\left(x\right) & = & A\left[e^{ikx} + ie^{-ikx}\right] \end{array}$$

- 7) Determine los valores promedio de \hat{x} , $\hat{x^2}$, \hat{p} y $\hat{p^2}$ para el estado fundamental y el primer estado excitado de un electrón confinado en un pozo de potencial infinito de ancho a.
- 8) Si $\psi(x)$ es una función de onda normalizada y continua, puede escribirse en términos de las autofunciones $\varphi_j(x)$ de un operador hermítico \hat{A} de la siguiente manera:

$$\psi\left(x\right) = \sum_{j} c_{j} \varphi_{j}\left(x\right)$$

- a) Obtenga una expresión para los coeficientes c_j .
- **b)** Calcule $\langle \hat{A} \rangle$. Interprete físicamente la cantidad $|c_j|^2$.
- 9) El estado de una partícula, en un pozo de potencial de ancho a=3 nm, y a un instante t, está descrito por la función de onda:

$$\psi(x) = 0.829\varphi_1(x) + 0.518\varphi_2(x) + 0.207\varphi_3(x)$$

- a) Calcule el valor medio de la energía, expresado en eV, y el valor medio de $\hat{p^2}$.
- b) Si existen 10^7 sistemas idénticos del tipo descrito ¿Cuántos estarán en el estado n=1?
- c) ¿Cuál es el valor de energía más probable en una medición?
- 10) ¿Pueden las ondas planas representar a una partícula libre? Justifique. ¿Que es un paquete de ondas?
- 11) El estado de una partícula de masa m en un pozo infinito esta dado, a t=0, por

$$\psi(x,0) = \frac{1}{\sqrt{3}}\varphi_1(x) + c_4\varphi_4(x)$$

- a) Hallar c_4 .
- **b)** Calcular $\langle E \rangle$ y σ_E . Interprete.
- 12) Una partícula se mueve con energía potencial $V(x) = -V_0 e^{-\alpha x^2}$.
 - a) Haga el gráfico de V(x).
 - b) Haga un bosquejo de las funciones de onda cuando la energía total es > 0 o < 0.
 - c) ¿Espera tener niveles de energía cuantificados en determinados rangos de energía?
 - d) Estime la energía del punto cero (la energía más baja, E_0). Se sugiere observar que para energías próximas a E_0 la partícula oscila con una frecuencia $\omega = \sqrt{\frac{1}{m} \left. \frac{d^2V}{dx^2} \right|_0}$

2