Alumno:		Padrón nº:
e-mail:	Firma:	1
Lea atentamente cada pregunta y conteste p		ndicado. Indique claramente la

Puntaje de corrección

1	2	3	4	5	6	Nota

1. Determine la temperatura de una estrella que sufre un colapso gravitatorio que lleva a que su volumen se reduzca a una cuarta parte.

Ayuda: Suponga que la estrella puede tratarse como un cuerpo negro con temperatura inicial T_0 y la potencia total irradiada es constante en la expansión. El volumen y superficie de la estrella de radio R son $V = \frac{4}{3}\pi R^3$ y

 $S = 4\pi R^2$, respectivamente

- 2. El comportamiento superficial de un metal puede representarse con gas de electrones confinado en una superficie de área, A, a una densidad n_0 (electrones/cm²)
 - a- Deduzca la densidad de estados bidimensional, $g_2(E)$.
 - b-Calcule la energía interna U en función de n_0 . Haga y justifique las aproximaciones que sean necesarias.
- 3.¿Cuáles son las dos situaciones más frecuentemente resueltas para semiconductores fuertemente extrínsecos fuera del equilibrio, y las aproximaciones realizadas en cada caso?. Justifique.
- 4. Para una juntura metal-semiconductor tal que: $\phi_M = 4.5 \text{ eV}$; $\phi_{Si} = 4.2 \text{ eV}$; $E_{gSi} = 1.12 \text{ eV}$; $\chi = 4 \text{ eV}$.
 - a- ¿Qué tipo de semiconductor es?
 - b-¿La juntura es óhmica o rectificante?. Justifique sus respuestas en base al diagrama de bandas.
- 5. El ancho de la zona desierta de la región P de una juntura P-N en Si es sólo el 20 % del ancho total.
 - a- ¿Cuáles son Na y Nd?
 - b- Determine: X_{θ} .
 - c- ¿Cuál es el E_{max} ?

Datos: $\phi_0 = 0.3 \text{ Volt.}$ $n_i = 1.45 \cdot 10^{10} \text{ cm}^{-3}$ $\varepsilon_r = 12$ $\varepsilon_0 = 8.85 \cdot 10^{-14} \text{ F cm}^{-1}$

- 6. Un transistor MOSFET
 - a- Describa el principio básico de funcionamiento.
 - b-¿Por qué existe una corriente de saturación?.