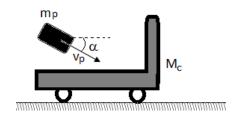

Segundo parcial de Física I - Martes 27 de Mayo de 2014 - Turno 4

Problema 1: Un cilindro de masa $M_c=2m$ y radio $R_c=R$ tiene enrollada una soga ideal (de masa despreciable e inextensible) a una distancia r=R/3. La soga pasa por una polea de masa $M_p=m$ y radio $R_p=R/2$ y está unida a un bloque de masa $M_B=2m$, como indica la figura. Considerando que el rozamiento es tal que el cilindro rueda sin deslizar:

- a) Hacer el diagrama de cuerpo libre del cilindro, la polea y el bloque. Escribir las ecuaciones de movimiento y las ecuaciones de vínculo.
- **b)** Calcular la aceleración del bloque.
- c) Calcular la aceleración del punto más alto del cilindro cuando éste tiene una velocidad angular de módulo w


Problema 2: Dos masas puntuales M_A =m y M_B =2m están unidas por una barra de longitud L de masa despreciable. El sistema se libera cuando está en la posición horizontal y gira alrededor de un eje fijo en el punto O, como indica la figura.

- a) Calcular el momento de inercia del sistema formado por las dos masas y la barra con respecto al punto O.
- b) Calcular la aceleración angular del sistema cuando la barra forma un ángulo de 30° con la horizontal.
- c) Calcular la velocidad del centro de masa del sistema cuando la barra forma un ángulo de 30° con la horizontal.
- d) Calcular la fuerza que ejerce el eje sobre el sistema cuando la barra forma un ángulo de 30° con la horizontal.

Problema 3: Un paquete de masa m_p cae sobre un carro de masa M_c . La velocidad del paquete en el momento del impacto con el carro es v_p y forma un ángulo α con la horizontal. El carro está inicialmente en reposo y puede moverse libremente sobre la superficie horizontal, sin que sea considerable el rozamiento. Luego del impacto los cuerpos se mueven juntos.

- a) Analizar la conservación del vector cantidad de movimiento para el sistema carro-paquete, justificando adecuadamente todas las afirmaciones.
- b) Hallar el vector velocidad del carro después de la interacción.
- c) Hallar el vector impulso ejercido sobre el paquete durante el impacto.
- d) Determinar la fracción de la energía mecánica inicial del sistema que se pierde en la interacción.

IMPORTANTE PARA TODOS LOS EJERCICIOS: Justifique todas las respuestas e indique claramente los sistemas de referencia utilizados. Las justificaciones se realizan por medio de ecuaciones. Resuelva los problemas en hojas separadas, escribiendo nombre y apellido en cada hoja y numerando las hojas que entrega.

Momento de inercia baricéntrico: de un aro $I_{CM}=MR^2$; de un cilindro $I_{CM}=MR^2/2$; de una esfera maciza $I_{CM}=2MR^2/5$; de una esfera hueca $I_{CM}=2MR^2/3$; de una barra $I_{CM}=ML^2/12$.