FACULTAD DE INGENIERÍA - UBA

ÁLGEBRA II. Segundo cuatrimestre 2013 EXAMEN INTEGRADOR – 18 de diciembre de 2013

TEMA 1

RESOLUCIÓN ESQUEMÁTICA

1. Sea V el subespacio del espacio vectorial $C^{\infty}(R)$, $V = gen\{senx, cosx\}$ y sea el endomorfismo $T: V \rightarrow V$ tal que

$$T(senx) = 2senx + cosx;$$
 $T(cosx) = 3cosx$

- a) Muestre que T es un isomorfismo y halle la transformación inversa.
- b) Si es posible, diagonalice la transformación lineal.

a) Si es $B = \{senx; cosx\}$ base de $V, T_B = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$ es matriz inversible por lo tanto T es in

isomorfismo. $T_B^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$. Por lo tanto

$$T^{-1}(senx) = \frac{1}{2}senx - \frac{1}{6}cosx; \ T^{-1}(cosx) = \frac{1}{3}cosx$$

b) Una diagonalización de T_B es

$$\begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}^{-1}.$$

 $\begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}^{-1}.$ Por lo tanto para la base $B' = \{v_1, v_2\} = \{senx - cosx; cosx\}$ es $T(v_1) = 2v_1$; $T(v_2) = (senx - cosx) = (senx - cosx)$ $3v_2$.

- 2. Decidir si cada uno de los ítems es verdadero o falso, demostrando o suministrando un contraejemplo según el caso.
 - a) Sean $A \in C^{n \times n}$, $B \in C^{n \times m}$, con A hermítica, entonces los autovalores de $B^H A B$ son reales.
 - b) Si $A \in \mathbb{R}^{n \times n}$ es antisimétrica sus autovalores son imaginarios puros.
- a) Verdadero. Es fácil mostrar que B^HAB es hermítica, por lo tanto sus autovalores son reales.
- b) Verdadero, es fácil mostrar que $iA \in C^{n \times n}$ es hermítica (por lo tanto sus autovalores son reales y admite una diagonalización unitaria), y por lo tanto, A admite una diagonalización unitaria y los elementos de la matriz diagonal son imaginarios puros.
- 3. Considere el problema a valores iniciales $x' = Ax, x(0) = x_0 \text{ con } x \in \mathbb{R}^n \text{ y } A \text{ una}$ matriz de proyección. Demuestre que toda solución del problema verifica a) o b) siendo a) $\lim_{t\to\infty} ||x(t)|| = ||x_0||$, b) $\lim_{t\to\infty} ||x(t)|| = +\infty$. Determine todos los valores de la condición inicial x_0 para los que se cumple a) y aquéllos para los que se cumple b).

Como A es de proyección, es diagonalizable con autovalores 0 y 1. Sea rango (A)=ry sea $B=\{v_1,\ldots;v_n\}$ una base ortonormal ordenada de autovectores de A tal que los primeros r corresponden al autovalor 1, Entonces si $[x_0]_B = [c_1,...,c_n]^T$

$$x(t) = (c_1v_1 + \dots + c_rv_r)e^t + c_{r+1} + \dots + c_nv_n$$

Condición a) $nul(A^T)$; condición b) col(A).

4. Halle los valores extremos de la forma cuadrática Q con la restricción $||x|| = \frac{1}{4}$, siendo $Q: R^2 \to R: Q(x) = \frac{3}{2}x_1^2 + \frac{5}{2}x_2^2 + \sqrt{3}x_1x_2$. Especifique la localización de dichos extremos en el sistema de coordenadas x_1, x_2

La matriz simétrica asociada es $A = \begin{bmatrix} \frac{3}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{5}{2} \end{bmatrix}$

Una diagonalización ortogonal de dicha matriz es $A = P.D.P^{T}$

siendo $D = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$, $P = \begin{bmatrix} \frac{1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} = [u_1 \quad u_2].$

Por lo tanto $\max_{\|x\|=\frac{1}{4}} Q = \frac{3}{16}$ y ocurre en $x = P\begin{bmatrix} \frac{1}{8} \\ \frac{\sqrt{3}}{8} \end{bmatrix}$.

 $\min_{\|x\|=\frac{1}{4}} Q = \frac{1}{16} \text{ y ocurre en } x = P \begin{bmatrix} \frac{-\sqrt{3}}{8} \\ \frac{1}{8} \end{bmatrix}.$

5. Sea la transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x) = Ax con

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

y sea $S = \{T(x), x \in R^3 : ||x|| = 1\}$. Siendo $A = U.\Sigma.V^T$ una DVS de A con $U = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$ muestre a partir de ella que S es la porción del plano generado por $\{u_1, u_2\}$ encerrada por una elipse. Determine los semidiámetros y los ejes principales de la elipse.

La DVS de A viene dada por

$$U = \begin{bmatrix} \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} \\ \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}; \qquad \Sigma = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix};$$

$$V = \begin{bmatrix} \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} \\ \frac{-2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} \end{bmatrix} = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix};$$

Entonces si $x = c_1v_1 + c_2v_2 + c_3v_3$ con $c_1^2 + c_2^2 + c_3^2 = 1$. $T(x) = 3c_1u_1 + c_2u_2$, con lo cual S es la superficie encerrada por la elipse de semidiámetros 3 y 1 y ejes principales u_1 y u_2 respectivamente.