ALUMNO:

Duración: 3 horas. Condición de aprobación: resolución completa y justificada de dos ejercicios cualesquiera

- 1. Dadas las constantes positivas α y a, sea el problema de hallar un campo escalar u(x,t) que satisface la ecuación diferencial $u_{tt}(x,t) = \alpha^2 u_{xx}(x,t)$ en 0 < x < a, 0 < t, las condiciones en la frontera u(0,t) = u(a,t) = 0 en $0 \le t$, y las condiciones iniciales $u(x,0) = 2\sin\left(\frac{\pi}{a}x\right)\cos\left(\frac{\pi}{a}x\right)$, $u_t(x,0) = 0$ en $0 \le x \le a$.
 - (a) Dar una interpretación física al problema, indicando unidades de las variables x, u, t, y los parámetros α, a , consistentes con esa interpretación. Hallar u(x,t), verificar que sea la solución del problema y graficarla para $t_1 = \frac{a}{4\alpha}$ y para $t_2 = \frac{a}{2\alpha}$.
 - (b) Hallar, siempre que exista, un número $x_0 \in (0, a)$, tal que la función $h(t) \stackrel{\text{def}}{=} u(x_0, t)$, sea constante para todo $t \ge 0$. ¿Cuál es el valor de esa constante?
- 2. Sean dados $S_1 = \{z \in \mathbb{C} : |z-3| \le |2z|\}, S_2 = \{w \in \mathbb{C} : |w| \le 1\}$, dos subconjuntos del plano complejo y sea γ la curva frontera de S_1 con orientación positiva.
 - (a) Definir una función $f: D_f \subset \mathbf{C} \to \mathbf{C}$, analítica en $D_f \supset \mathcal{S}_1$, tal que para todo $z \in \mathcal{S}_1$ sea $w = f(z) \in \mathcal{S}_2$, graficando \mathcal{S}_1 y \mathcal{S}_2 .
 - (b) Para la función f definida en el ítem (a), calcular para todo número natural n la integral $\oint_{\gamma} (\bar{z}+1)^n f(z) dz$.
- 3. Sea γ_k la famillia de curvas dada por $z:[0,2\pi]\to \mathbf{C}$ tal que $z(t)=i+ke^{it}$, con $k\in\mathbf{R}^+$. Calcular, para todo k donde esté definida, la integral curvilínea $\oint_{\gamma_k} \frac{f(z)}{z^2-(1+2i)z+2i}\,dz$, siendo $f:\mathbf{C}\to\mathbf{C}$ una función analítica en todo el plano complejo, cuyo módulo es $|f(z)|=2e^{2xy}$, con f(0)=2.
- 4. Probar cada una de las siguientes afirmaciones, explicitando detalladamente las justificaciones o contraejemplos utilizados.
 - (a) Dado el intervalo (acotado) I = [a, b] y los espacios de funciones $L_2(I)$ (esto es el conjunto de funciones $f: I \to \mathbf{R}$ cuyo cuadrado es integrable en I) y $L_1(I)$ (esto es el conjunto de funciones $f: I \to \mathbf{R}$ absolutamente integrables en I) se verifica que $L_2(I) \subset L_1(I)$, con $L_1(I) \neq L_2(I)$.
 - (b) Sean dadas la función $f: D_f \subset \mathbf{C} \to \mathbf{C}$ analítica en el punto $z_0 = x_0 + iy_0$, con $f'(z_0) \neq 0$, la curva λ dada por $z = \lambda(t)$, con $\lambda(t_0) = z_0, \lambda'(t_0) \neq 0$, y la curva μ dada por $z = \mu(t)$, con $\mu(t_0) = z_0, \mu'(t_0) \neq 0$. En tales condiciones, el ángulo (orientado) entre las curvas λ, μ en z_0 es el mismo que el formado por sus curvas imágenes en $f(z_0)$. Sin la condición $f'(z_0) \neq 0$, la preservación del ángulo no puede asegurarse.