EXAMEN INTEGRADOR

25 de julio de 2012 (4ª fecha)

TEMA 1

RESOLUCIÓN

Aclaración: El alumno debe tener presente que siempre hay más de una forma correcta de resolver un ejercicio. La resolución aquí presentada es una de las tantas posibles.

EJERCICIO 1:

- (a) Resolver $\begin{cases} (i) (1+x) y' = xy + e^x \\ (ii) y(0) = 1 \end{cases}$, especificando intervalo de unicidad de la solución.
- **(b)** Hallar, si existen, todos los valores reales no nulos de *a* para los cuales la ecuación $y''+4ay'+4a^2y=4a^5$ admite alguna solución f tal que $_x\underline{Lim}_{+\infty} f(x)=-8$. En caso de existir, encontrar alguna de estas soluciones.

RESOLUCIÓN 1) (a) para todo $x \in \Re$:

$$(1+x)y'-xy = e^{x} \Leftrightarrow (1+x)e^{-x}y' - xe^{-x}y = 1 \Leftrightarrow [(1+x)e^{-x}y]' = 1$$

Por lo tanto, existe una constante real c tal que $(1+x)e^{-x}y = x + c$. Entonces, para $x \ne -1$ es $y(x) = \frac{x+c}{x+1}e^x$. La condición (ii) impone entonces c = 1 y la elección del intervalo $(-1,+\infty)$. Por lo tanto, la única solución del problema (i) (ii) en $(-1,+\infty)$ es $y(x) = e^x$.

Observación: En $\Re -\{-1\}$ se tienen las infinitas soluciones

$$y_c(x) = \begin{cases} c^x & x > -1 \\ \frac{x+c}{x+1} e^x & x < -1 \end{cases}$$

RESOLUCIÓN 1)(b): La ecuación algebraica asociada a la ecuación diferencial homogénea $y''+4ay'+4a^2y=0$ es $\lambda^2+4a+4a^2=0$, es decir: $(\lambda+2a)^2=0$. Por otra parte, una solución particular de $y''+4ay'+4a^2y=4a^5$ es la constante $y_p=a^3$. Por lo tanto, todas las soluciones de la ecuación $y''+4ay'+4a^2y=4a^5$ son las funciones $y(x)=(c_1+c_2x)e^{-2ax}+a^3$. Si alguna de las constantes c_1 , c_2 es no nula, el límite de $y(x)=(c_1+c_2x)e^{-2ax}+a^3$ cuando $x\to +\infty$ sólo puede existir si a>0, y en ese caso el límite es a^3 (que es positivo), o bien si a=0 y $c_2=0$, caso descartado en el enunciado (se pide a no nulo). Por lo tanto, debe ser necesariamente a<0 y $c_1=c_2=0$, obteniéndose la función constante $f(x)=a^3$, que verifica $\frac{Lim}{x}$ f(x)=-8 si y solamente si a=-2.

EJERCICIO 2: Halle, si existe, una matriz hermítica $A \in \mathbb{C}^{6\times 3}$ que verifique simultáneamente las siguientes tres condiciones: (i) $A\begin{bmatrix}1 & 0 & -1\end{bmatrix}^T = \begin{bmatrix}1 & 0 & -1\end{bmatrix}^T$, (ii) 2 es autovalor doble de A y (iii) el subespacio $S = \{x \in \mathbb{C}^3 : x_1 - i x_2 + x_3 = 0\}$ es invariante por A (o A-estable).

RESOLUCIÓN 2) Las matrices hermíticas tienen autovalores reales y se diagonalizan unitariamente, por lo tanto la matriz pedida es de la forma $A = UD\overline{U}^T$, donde $U \in \mathbb{C}^{6\times 3}$ es unitaria y $D = Diag[\lambda_1 \quad \lambda_2 \quad \lambda_3] \in \mathbb{R}^{3\times 3}$. Por las condiciones (i) y (ii) resulta que un autovalor de A es 1, con multiplicidad 1, y el otro es 2, con multiplicidad 2. Es decir: salvo orden de los elementos de la diagonal, es $D = Diag[1 \quad 2 \quad 2]$. Ahora, dado que $S = \{x \in \mathbb{C}^6 : x_1 - i x_2 + x_3 = 0\}$ es A-estable, su complemento ortogonal $S^{\perp} = gen\{[1 \quad i \quad 1]^T\}$ también es estable (¹). Puesto que S^{\perp} tiene dimensión 1, esto significa que $u_1 = \frac{1}{\sqrt{3}}[1 \quad i \quad 1]^T$ es autovector de A. Por la condición (i), el vector $u_2 = \frac{1}{\sqrt{2}}[1 \quad 0 \quad -1]^T$, que pertenece a S, es autovector asociado a 1. Por lo tanto, $u_3 = \frac{1}{\sqrt{6}}[1 \quad -2i \quad 1]^T$, que también pertenece a S y completa una base ortonormal $\{u_1, u_2, u_3\}$ de \mathbb{C}^6 , es necesariamente un autovector de A. Dadas las multiplicidades mencionadas, tenemos:

$$Au_1 = 2u_1$$
, donde $u_1 = u \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & i & 1 \end{bmatrix}^T$,
 $Au_2 = u_2$, donde $u_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T$,
 $Au_3 = 2u_3$, donde $u_3 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & -2i & 1 \end{bmatrix}^T$ (*1)

Se deduce que

y

$$A = \begin{bmatrix} \frac{U}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{i}{\sqrt{3}} & 0 & \frac{-2i}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-i}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{2i}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix} = \begin{bmatrix} \frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 2 & 0 \\ \frac{1}{2} & 0 & \frac{3}{2} \end{bmatrix}$$
 (*2)

Comprobación: A es obviamente hermítica; de $Au_2 = u_2$ y $Au_3 = 2u_3$ se deduce inmediatamente que $S = gen\{u_2, u_3\}$ es A-estable. Finalmente, las condiciones (i) y (ii) se verifican de inmediato.

Unicidad (No se pide en el enunciado): Los autovectores unitarios $\{u_1, u_2, u_3\}$ de A quedan determinados, salvo signo, por las condiciones del enunciado, de la misma manera que los autovalores. El producto (*2) no es alterado por ninguna permutación de las filas de la matriz U, con la correspondiente permutación de los elementos de la diagonal D (lo que equivale a escribir las ecuaciones (*1) en otro orden), ni tampoco por cambios de signos en las filas de U, pues el eventual cambio de signo se compensa con el factor \overline{U}^T . Por lo tanto, la matriz exhibida es la única que satisface las condiciones del enunciado.

(1) Si
$$x \in S^{\perp}$$
, para todo $y \in S$: $(Ax, y) = \overline{(Ax)}^T y = \overline{x}^T A^T y = \overline{x}^T A y = (x, \overline{Ay}) = 0$.

EJERCICIO 3: Sea $A \in \Re^{3 \times 3}$ la matriz del producto interno canónico respecto de la base

$$B = \left\{ \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \right\} \text{ y sea } Q \colon \Re^3 \to \Re \text{ la forma cuadrática dada por } Q(x) = x^T A x. \text{ Determinar,}$$

si existen, $Max\{||x||^2: Q(x) = 2\}$ y $Min\{||x||^2: Q(x) = 2\}$ y los puntos donde se alcanzan estos valores.

RESOLUCIÓN: La matriz $A = \begin{bmatrix} 5 & 0 & 3 \\ 0 & 9 & 0 \\ 3 & 0 & 5 \end{bmatrix}$ es real, simétrica y definida positiva (si no, no sería la

matriz de un producto interno). Su diagonalización es sencilla. Por ejemplo:

$$\begin{bmatrix} 5 & 0 & 3 \\ 0 & 9 & 0 \\ 3 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ 0 \\ 8 \end{bmatrix}, \qquad \begin{bmatrix} 5 & 0 & 3 \\ 0 & 9 & 0 \\ 3 & 0 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 9 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 5 & 0 & 3 \\ 0 & 9 & 0 \\ 3 & 0 & 5 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix}$$

Tenemos la base ortonormal $\{u, v, w\}$ de \Re^3 , donde $u = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $v = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $w = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ verifican:

Au = 8u, Av = 9v y Aw = 2w. Entonces, para todo $x = au + bv + cw \in \Re^3$ tenemos que $Q(x) = (Ax, x) = 8a^2 + 9b^2 + 2c^2$ y $||x||^2 = a^2 + b^2 + c^2$. Por lo tanto,

$$Q(x) = 2 \Leftrightarrow 8a^2 + 9b^2 + 2c^2 = 2$$

y en ese caso:

(1)
$$\|x\|^2 = a^2 + b^2 + c^2 = a^2 + b^2 + 1 - 4a^2 - \frac{9}{2}b^2 = 1 - 3a^2 - \frac{7}{2}b^2 \le 1$$
 y es $\|x\|^2 = 1$ sii $a = b = 0$, es decir: $x = cw$, donde $c^2 = 1$

(2)
$$||x||^2 = a^2 + b^2 + c^2 = a^2 + \frac{1}{9}(2 - 8a^2 - 2c^2) + c^2 = \frac{2}{9} + \frac{1}{9}a^2 + \frac{7}{9}c^2 \ge \frac{2}{9}$$
 y es $||x||^2 = \frac{2}{9}$ sii $a = c = 0$, es decir: $x = bv$, donde $b^2 = \frac{2}{9}$.

Por lo tanto:

$$Max\{ ||x||^2 : Q(x) = 2 \} = 1$$
 y este valor se alcanza en los puntos $w = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ y $-w = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$
 $Min\{ ||x||^2 : Q(x) = 2 \} = \frac{2}{9}$ y este valor se alcanza en los puntos $\frac{\sqrt{2}}{3}v = \frac{\sqrt{2}}{3} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ y $-\frac{\sqrt{2}}{3}u = \frac{-\sqrt{2}}{3} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

Observación: Dado que la forma cuadrática Q es definida positiva, se pueden utilizar las desigualdades de Rayleigh, en este caso $2\|x\|^2 \le Q(x) \le 9\|x\|^2$, y deducir, puesto que Q(x) > 0 para todo $x \in \Re^3 - \{0\}$, que $\frac{1}{9}Q(x) \le \|x\|^2 \le \frac{1}{2}Q(x)$. Por lo tanto, para todo $x \in \Re^3$ tal que Q(x) = 2 resulta $\frac{2}{9} \le \|x\|^2 \le 1$. Obviamente, esto no demuestra que $\frac{2}{9}$ es mínimo buscado ni que 1 es máximo. Debe verificarse, además, que existe al menos un $x_0 \in \Re^3$ tal que $Q(x_0) = 2$ y $\|x_0\|^2 = \frac{2}{9}$ y algún $y_0 \in \Re^3$ tal que $Q(y_0) = 2$ y $\|y_0\|^2 = 1$. Que estos puntos existen y cuáles son, es parte de la respuesta solicitada.

EJERCICIO 4: Encontrar la solución general del sistema X' = AX, siendo $A \in \Re^{3\times 3}$ la matriz simétrica tal que $A^2 = I$, $A \ne I$ y Ax = x para todo $x \in \Re^3$ tal que $2x_1 - x_2 + 2x_3 = 0$.

RESOLUCIÓN: A es la matriz (respecto de la base canónica de \Re^3) de la reflexión respecto del subespacio $S = \{x \in \Re^3 : 2x_1 - x_2 + 2x_3\}$. Por lo tanto, dados $u = \begin{bmatrix} 2 & -1 & 2 \end{bmatrix}^T$, $v = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}^T$ y $w = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix}^T$ (que forman una base de \Re^3), tenemos que Au = -u, Av = v y Aw = w, pues $S^{\perp} = gen\{u\}$ y $S = gen\{v, w\}$. Entonces, la solución general del sistema es

$$X(t) = a e^{-t} \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix} + b e^{t} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + c e^{t} \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

Obviamente, los vectores v y w pueden reemplazarse por cualquier otro par que constituya una base de S, por ejemplo $v = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T y \ w = \begin{bmatrix} 1 & 4 & 1 \end{bmatrix}^T$.

Para el interesado en conocerla: $A = \frac{1}{9} \begin{bmatrix} 1 & 4 & -8 \\ 4 & 7 & 4 \\ -8 & 4 & 1 \end{bmatrix}$.

_ _ _

EJERCICIO 5: Dada $A = \begin{bmatrix} -1 & 1 \\ -2 & 2 \\ -1 & 1 \end{bmatrix}$, hallar todos los $b \in \Re^3$ tales que $x_0 = \begin{bmatrix} -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$ es la solución de

de norma mínima del problema de mínimos cuadrados Ax = b.

RESOLUCIÓN 5: Una descomposición reducida de A en valores singulares es

$$A = \begin{bmatrix} \frac{U_r}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix} \left[\sqrt{12} \right] \begin{bmatrix} \frac{V_r^T}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

y entonces $A^+ = \begin{bmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{U_r^T}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix} = \begin{bmatrix} \frac{-1}{12} & \frac{-2}{12} & \frac{-1}{12} \\ \frac{1}{12} & \frac{2}{12} & \frac{1}{12} \end{bmatrix}$. Por lo tanto, los $b \in \Re^3$ pedidos en el enunciado son los que verifican $A^+b = x_0$, es decir:

$$\begin{cases} \frac{-1}{12}b_1 - \frac{2}{12}b_2 - \frac{1}{12}b_3 = -\frac{1}{3} \\ \frac{1}{12}b_1 + \frac{2}{12}b_2 + \frac{1}{12}b_3 = \frac{1}{3} \end{cases}$$

Este sistema equivale a la única ecuación $b_1 + 2b_2 + b_3 = 4$. (*)

Otra manera: Los $b \in \mathbb{R}^3$ buscados son todos aquellos cuya proyección sobre el elspacio columna de A es $Ax_0 = \begin{bmatrix} \frac{2}{3} & \frac{4}{3} & \frac{2}{3} \end{bmatrix}^T$. Teniendo en cuenta que todo $b \in \mathbb{R}^3$ puede escribirse en forma única $b = P_{col(A)}b + P_{col(A)^{\perp}}b$, los $b \in \mathbb{R}^3$ solicitados son de la forma

$$b = \begin{bmatrix} \frac{2}{3} \\ \frac{4}{3} \\ \frac{2}{3} \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + \mu \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$

Esta expresión no es otra cosa que la expresión paramétrica de las soluciones de (*).