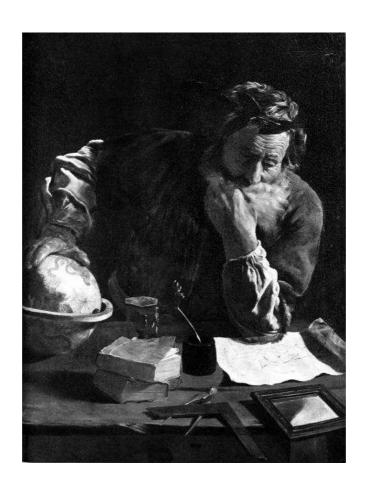
Variables aleatorias: momentos (Borradores, Curso 23)

Sebastian Grynberg 27 de marzo 2013



Denme un punto de apoyo y moveré el mundo (Arquímedes de Siracusa)

Índice

1.	Esperanza	2				
	1.1. Definición	3				
	1.2. Cálculo	8				
	1.3. Propiedades	10				
	1.4. Dividir y conquistar	11				
2.	Varianza	12				
	2.1. Definición	12				
	2.2. Cálculo	13				
	2.3. Propiedades	14				
3.	Covarianza	14				
	3.1. Definición	14				
	3.2. Cálculo	14				
	3.3. Propiedades	16				
	3.4. Varianza de sumas	16				
4.	Algunas desigualdades	17				
	4.1. Cauchy-Schwartz	17				
	4.2. Chebyshev	18				
5.	La ley débil de los grandes números	20				
6.	. Distribuciones particulares					
7.	. Bibliografía consultada					

1. Esperanza

La información relevante sobre el comportamiento de una variable aleatoria está contenida en su función de distribución. Sin embargo, en la práctica, es útil disponer de algunos números representativos de la variable aleatoria que resuman esa información.

Motivación Se gira una rueda de la fortuna varias veces. En cada giro se puede obtener alguno de los siguiente números x_1, x_2, \ldots, x_k -que representan la cantidad de dinero que se obtiene en el giro- con probabilidades $p(x_1), p(x_2), \ldots, p(x_k)$, respectivamente. ¿Cuánto dinero se "espera" obtener como recompensa "por cada giro"? Los términos "espera" y "por cada giro" son un tanto ambiguos, pero se pueden interpretar de la siguiente manera.

Si la rueda se gira n veces y $n(x_i)$ es la cantidad de veces que se obtiene x_i , la cantidad total de dinero recibida es $\sum_{i=1}^k n(x_i)x_i$ y la cantidad media por giro es $\mu = \frac{1}{n}\sum_{i=1}^k n(x_i)x_i$. Interpretando las probabilidades como frecuencias relativas obtenemos que para n suficientemente grande la cantidad de dinero que se "espera" recibir "por cada giro" es

$$\mu = \frac{1}{n} \sum_{i=1}^{k} x_i \, n(x_i) = \sum_{i=1}^{k} x_i \, \frac{n(x_i)}{n} \approx \sum_{i=1}^{k} x_i \, p(x_i).$$

1.1. Definición

Definición 1.1 (Esperanza de una variable discreta). Sea X una variable aleatoria discreta. La esperanza de X, denotada por $\mathbb{E}[X]$, es el promedio ponderado

$$\mathbb{E}[X] := \sum_{x \in \mathbb{A}} x \mathbb{P}(X = x),\tag{1}$$

donde $\mathbb{A} = \{x \in \mathbb{R} : F(x) - F(x-) > 0\}$ es el conjunto de todos los átomos de la función distribución de X.

Ejemplo 1.2 (Esperanza de la función indicadora). Sea $(\Omega, \mathcal{A}, \mathbb{P})$ un espacio de probabilidad. Para cualquier evento $A \in \mathcal{A}$ vale que

$$\mathbb{E}[\mathbf{1}\{\omega \in A\}] = 0 \cdot (1 - \mathbb{P}(A)) + 1 \cdot \mathbb{P}(A) = \mathbb{P}(A). \tag{2}$$

La esperanza como centro de gravedad. La noción de esperanza es análoga a la noción de centro de gravedad para un sistema de partículas discreto.

Se consideran n partículas ubicadas en los puntos x_1, \ldots, x_n cuyos pesos respectivos son $p(x_1), \ldots, p(x_n)$. No se pierde generalidad si se supone que $\sum_{i=1}^n p(x_i) = 1$. El centro de gravedad, c, del sistema es el punto respecto de la cual la suma de los momentos causados por los pesos $p(x_i)$ es nula. Observando que

$$\sum_{i=1}^{k} (x_i - c) p(x_i) = 0 \iff c = \sum_{i=1}^{k} x_i p(x_i)$$

resulta que el centro de gravedad del sistema coincide con la esperanza de una variable aleatoria X a valores en $\{x_1, \ldots, x_n\}$ tal que $\mathbb{P}(X = x_i) = p(x_i)$.

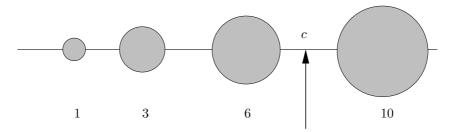


Figura 1: Interpretación de la esperanza como centro de gravedad. Se considera un sistema de cuatro "partículas" de pesos p_i proporcionales a las áreas de los círculos de radio 1/3, 2/3, 3/3, 4/3 centrados en los puntos $x_i = 1, 3, 6, 10$, respectivamente. No se pierde generalidad si se supone que el peso total del sistema es la unidad. El centro de gravedad del sistema se encuentra en el punto $c = \sum_{i=1}^4 x_i p_i = 227/30 = 7.56...$

La esperanza como promedio. Sea X una variable aleatoria a valores x_1, \ldots, x_n con función de probabilidades

$$\mathbb{P}(X = x) = \frac{1}{n} \mathbf{1} \{ x \in \{x_1, \dots, x_n\} \}.$$

Conforme a la Definición 1.1 la esperanza de X es

$$\mathbb{E}[X] = \sum_{i=1}^{n} x_i \mathbb{P}(X = x_i) = \frac{1}{n} \sum_{i=1}^{n} x_i.$$
 (3)

Dicho en palabras: la esperanza de una variable aleatoria uniformemente distribuida sobre los valores x_1, x_2, \ldots, x_n coincide con el promedio de dichos valores.

Ejemplo 1.3 (Dado equilibrado). Sea X el resultado del lanzamiento de un dado equilibrado. De acuerdo con (3) la esperanza de X es

$$\mathbb{E}[X] = \frac{1}{6} \sum_{x=1}^{6} x = \frac{21}{6} = \frac{7}{2}.$$

Ejemplo 1.4 (Uniforme sobre el "intervalo" $\{1, 2, ..., n\}$). La variable aleatoria del Ejemplo 1.3 es un caso particular de una variable aleatoria discreta X uniformemente distribuida sobre el "intervalo" de números enteros $\{1, 2, ..., n\}$. De acuerdo con (3) la esperanza de X es

$$\mathbb{E}[X] = \frac{1}{n} \sum_{x=1}^{n} x = \frac{1}{n} \left(\frac{n(n+1)}{2} \right) = \frac{1+n}{2}.$$

Ejemplo 1.5 (Moneda equilibrada). Sea N la cantidad de veces que debe lanzarse una moneda equilibrada hasta que salga cara. N es una variable aleatoria discreta a valores $1, 2, \ldots$ tal que $\mathbb{P}(N=n)=(1/2)^n, n=1,2,\ldots$ De acuerdo con la definición 1.1, la esperanza de N es

$$\mathbb{E}[N] = \sum_{n=1}^{\infty} n \mathbb{P}(N=n) = \sum_{n=1}^{\infty} n \left(\frac{1}{2}\right)^{n}.$$

Derivando ambos lados de la igualdad $\sum_{n=0}^{\infty} x^n = (1-x)^{-1}$, que vale para |x| < 1, se deduce que $\sum_{n=0}^{\infty} nx^{n-1} = (1-x)^{-2}$ y de allí resulta que $\sum_{n=1}^{\infty} nx^n = x(1-x)^{-2}$. Evaluando en x = 1/2 se obtiene que

$$\mathbb{E}[N] = \sum_{n=1}^{\infty} n\left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{-2} = 2.$$

La noción de esperanza se extiende a variables aleatorias absolutamente continuas cambiando en (1) la suma por la integral y la función de probabilidades P(X = x), $x \in \mathbb{A}$, por la densidad de probabilidades de la variable X.

Definición 1.6 (Esperanza de una variable absolutamente continua). Sea X una variable aleatoria absolutamente continua con densidad de probabilidades $f_X(x)$. La esperanza de X, denotada por $\mathbb{E}[X]$, se define por

$$\mathbb{E}[X] := \int_{-\infty}^{\infty} x f_X(x) dx. \tag{4}$$

Ejemplo 1.7 (Fiabilidad). Sea T el tiempo de espera hasta que ocurre la primer falla en un sistema electrónico con función intensidad de fallas de la forma $\lambda(t) = 2t\mathbf{1}\{t > 0\}$. La función de distribución de T es $F_T(t) = (1 - \exp(-t^2))\mathbf{1}\{t > 0\}$. En consecuencia, T es una variable aleatoria absolutamente continua con densidad de probabilidad $f_T(t) = 2t \exp(-t^2)\mathbf{1}\{t > 0\}$. De acuerdo con la definición 1.6, la esperanza de T es

$$\mathbb{E}[T] = \int_{-\infty}^{\infty} t f_T(t) dt = \int_{0}^{\infty} t 2t \exp(-t^2) dt = \int_{0}^{\infty} \exp(-t^2) dt = \frac{\sqrt{\pi}}{2}.$$

La tercera igualdad se deduce de la fórmula de integración por partes aplicada a u=t y $v'=2t\exp(-t^2)$ y la cuarta se deduce de la identidad $\int_0^\infty \exp(-x^2/2)dx = \sqrt{2\pi}/2$ mediante el cambio de variables $t=x/\sqrt{2}$.

Extendiendo la noción a variables mixtas. La noción de esperanza para variables mixtas se obtiene combinando las nociones anteriores.

Definición 1.8 (Esperanza de una variable mixta). Sea X una variable aleatoria mixta con función de distribución $F_X(x)$. La esperanza de X, denotada por $\mathbb{E}[X]$, se define de la siguiente manera:

$$\mathbb{E}[X] := \sum_{x \in \mathbb{A}} x \mathbb{P}(X = x) + \int_{-\infty}^{\infty} x F_X'(x) dx, \tag{5}$$

donde $\mathbb{A} = \{x \in \mathbb{R} : F_X(x) - F_X(x-) > 0\}$ es el conjunto de todos los átomos de $F_X(x)$ y $F_X'(x)$ es una función que coincide con la derivada de $F_X(x)$ en todos los puntos donde esa función es derivable y vale 0 en otro lado.

Ejemplo 1.9 (Mixtura). Sea X una variable aleatoria mixta cuya función de distribución es $F_X(x) = \left(\frac{2x+5}{8}\right) \mathbf{1}\{-1 \le x < 1\} + \mathbf{1}\{x \ge 1\}$. De acuerdo con la fórmula (5), la esperanza de X es

$$\mathbb{E}[X] = -1 \cdot \mathbb{P}(X = -1) + 1 \cdot \mathbb{P}(X = 1) + \int_{-1}^{1} F_X'(x) dx = -\frac{3}{8} + \frac{1}{8} + \int_{-1}^{1} \frac{2}{8} dx = \frac{1}{4}.$$

Nota Bene. En todas las definiciones anteriores, se presupone que las series y/o integrales involucradas son absolutamente convergentes.

Ejemplo 1.10 (Distribución de Cauchy). Sea X una variable aleatoria con distribución de Cauchy. Esto es, X es absolutamente continua y admite una densidad de probabilidades de la forma

$$f(x) = \frac{1}{\pi(1+x^2)}.$$

Debido a que

$$\int_{-\infty}^{\infty} |x| f(x) dx = \int_{-\infty}^{\infty} \frac{|x|}{\pi (1 + x^2)} dx = \infty,$$

X no tiene esperanza.

Teorema 1.11. Sea X una variable aleatoria no negativa (i.e., $F_X(x) = \mathbb{P}(X \leq x) = 0$ para todo x < 0). Vale que

$$\mathbb{E}[X] = \int_0^\infty \left[1 - F_X(x)\right] dx. \tag{6}$$

Demostración. El argumento principal está contenido en la Figura 2. El caso general se deduce usando técnicas de "paso al límite".

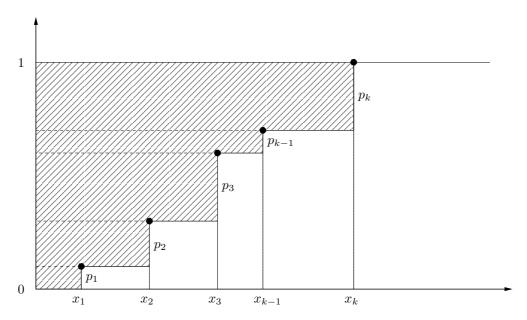


Figura 2: Argumento geométrico que muestra la validez de la identidad (6) en el caso en que X es no negativa, discreta y a valores $0 \le x_1 < x_2 < \cdots < x_k$. Si $p_i = \mathbb{P}(X = x_i)$, el área de la región sombreada es la suma $x_1p_1 + \cdots + x_kp_k = \mathbb{E}[X]$ de las áreas de los rectángulos horizontales y coincide con la integral de la altura $\mathbb{P}(X > x)$.

Corolario 1.12. Sea X una variable aleatoria con función de distribución $F_X(x)$. Vale que

$$\mathbb{E}[X] = \int_0^\infty [1 - F_X(x)] \, dx - \int_{-\infty}^0 F_X(x) dx.$$
 (7)

Demostración. Ejercicio.

Nota Bene. Las identidades (6) y (7) son interesantes porque muestran que para calcular la esperanza de una variable aleatoria basta conocer su función de distribución. De hecho, la identidad (7) ofrece una definición alternativa y unificada de la noción de esperanza.

Ejemplo 1.13. Una máquina fue diseñada para prestar servicios en una instalación productiva. La máquina se enciende al iniciar la jornada laboral y se apaga al finalizar la misma. Si durante ese período la máquina falla, se la repara y en esa tarea se consume el resto de la jornada.

Suponiendo que la función intensidad de fallas de la máquina es una constante $\lambda > 0$ (y que el tiempo se mide en jornadas laborales), hallar el máximo valor de λ que permita asegurar con una probabilidad mayor o igual que 2/3 que la máquina prestará servicios durante una jornada laboral completa. Para ese valor de λ , hallar (y graficar) la función de distribución del tiempo, T, de funcionamiento de la máquina durante una jornada laboral y calcular el tiempo medio de funcionamiento, $\mathbb{E}[T]$.

Solución. Si T_1 es el tiempo que transcurre desde que se enciende la máquina hasta que ocurre la primer falla, el evento "la máquina funciona durante una jornada laboral completa" se describe mediante $\{T_1 > 1\}$. Queremos hallar el máximo $\lambda > 0$ tal que $\mathbb{P}(T_1 > 1) \geq 2/3$. Debido a que la función intensidad de fallas es una constante λ se tiene que $\mathbb{P}(T_1 > 1) = e^{-\lambda t}$. En consecuencia, $\mathbb{P}(T_1 > 1) \geq 2/3 \iff e^{-\lambda} \geq 2/3 \iff \lambda \leq -\log(2/3)$. Por lo tanto, $\lambda = -\log(2/3)$. En tal caso, $\mathbb{P}(T > 1) = 2/3$.

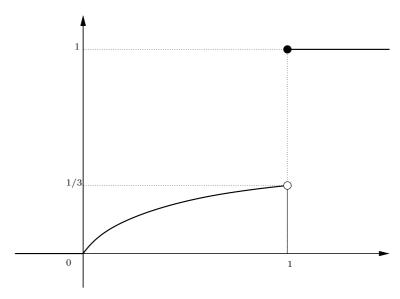


Figura 3: Gráfico de la función de distribución de T.

El tiempo de funcionamiento de la máquina por jornada laboral es $T = \min\{T_1, 1\}$. Para t > 0 vale que

$$F_T(t) = \mathbb{P}(T \le t) = 1 - \mathbb{P}(T > t) = 1 - \mathbb{P}(\min\{T_1, 1\} > t)$$

$$= 1 - \mathbb{P}(T_1 > t)\mathbf{1}\{1 > t\} = 1 - e^{\log(2/3)t}\mathbf{1}\{t < 1\}$$

$$= \left(1 - e^{\log(2/3)t}\right)\mathbf{1}\{0 \le t < 1\} + \mathbf{1}\{t \ge 1\}.$$

Como T>0 y conocemos la función $\mathbb{P}(T>t)$ lo más sencillo para calcular la esperanza es usar la fórmula $\mathbb{E}[T]=\int_0^\infty \mathbb{P}(T>t)dt$:

$$\mathbb{E}[T] = \int_0^\infty \mathbb{P}(T > t) dt = \int_0^1 e^{\log(2/3)t} dt = \frac{e^{\log(2/3)t}}{\log(2/3)} \Big|_0^1 = \frac{2/3 - 1}{\log(2/3)}$$
$$= \frac{-1/3}{\log(2/3)} \approx 0.822...$$

1.2. Cálculo

Sea X una variable aleatoria cuya función de distribución conocemos. Queremos calcular la esperanza de alguna función de X, digamos, g(X). ¿Cómo se puede efectuar ese cálculo? Una manera es la siguiente: (1) Hallamos la función de distribución de la variable aleatoria Y = g(X) a partir del conocimiento que tenemos sobre la distribución de X:

$$F_Y(y) := \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y) = \mathbb{P}(X \in g^{-1}(-\infty, y]).$$

(2) Usando la distribución de Y calculamos la esperanza $\mathbb{E}[g(X)] = \mathbb{E}[Y]$ por definición.

Ejemplo 1.14. Sea X una variable aleatoria discreta tal que $\mathbb{P}(X=0)=0.2$, $\mathbb{P}(X=1)=0.5$ y $\mathbb{P}(X=2)=0.3$. Queremos calcular $\mathbb{E}[X^2]$. Poniendo $Y=X^2$ obtenemos una variable aleatoria a valores en $\{0^2,1^2,2^2\}$ tal que $\mathbb{P}(Y=0)=0.2$ $\mathbb{P}(Y=1)=0.5$ y $\mathbb{P}(Y=4)=0.3$. Por definición, $\mathbb{E}[X^2]=\mathbb{E}[Y]=0(0.2)+1(0.5)+4(0.3)=1.7$.

Ejemplo 1.15. Sea X una variable aleatoria con distribución uniforme sobre el intervalo (0,1). Queremos calcular $\mathbb{E}[X^3]$. Ponemos $Y=X^3$ y calculamos su función de distribución: para cada 0 < y < 1 vale que $F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(X^3 \le y) = \mathbb{P}(X \le y^{1/3}) = y^{1/3}$. Derivando $F_Y(y)$ obtenemos la densidad de probabilidad de $Y: f_Y(y) = \frac{1}{3}y^{-2/3}\mathbf{1}\{0 < y < 1\}$. Por definición,

$$\mathbb{E}[X^3] = \mathbb{E}[Y] = \int_{-\infty}^{\infty} y f_Y(y) dy = \int_0^1 y \frac{1}{3} y^{-2/3} dy = \frac{1}{3} \int_0^1 y^{1/3} dy = \frac{1}{3} \frac{3}{4} y^{4/3} \Big|_0^1 = \frac{1}{4}.$$

Nota Bene. Existe una manera mucho más simple para calcular la esperanza de Y = g(X) que no recurre al procedimiento de determinar primero la distribución de Y para luego calcular su esperanza por definición. El Teorema siguiente muestra cómo hacerlo.

Teorema 1.16. Sea X una variable aleatoria y sea $g: \mathbb{R} \to \mathbb{R}$ una función tal que g(X) también es una variable aleatoria.

(a) Si X es discreta con átomos en el conjunto \mathbb{A} , entonces

$$\mathbb{E}[g(X)] = \sum_{x \in \mathbb{A}} g(x) \mathbb{P}(X = x). \tag{8}$$

(b) Si X es continua con densidad de probabilidad $f_X(x)$ y g(X) es continua, entonces

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx. \tag{9}$$

(c) Si X es mixta,

$$\mathbb{E}[g(X)] = \sum_{x \in \mathbb{A}} g(x) \mathbb{P}(X = x) + \int_{-\infty}^{\infty} g(x) F_X'(x) dx, \tag{10}$$

donde A es el conjunto de todos los átomos de $F_X(x)$ y $F_X'(x)$ es un función que coincide con la derivada de $F_X(x)$ en todos los puntos donde esa función es derivable y vale cero en otro lado.

Demostración. Para simplificar la demostración supondremos que $g \ge 0$.

(a) Por el Teorema 1.11 tenemos que

$$\mathbb{E}[g(X)] = \int_0^\infty \mathbb{P}(g(X) > y) dy = \int_0^\infty \left(\sum_{x \in \mathbb{A}} \mathbf{1} \{ g(x) > y \} \mathbb{P}(X = x) \right) dy$$
$$= \sum_{x \in \mathbb{A}} \left(\int_0^\infty \mathbf{1} \{ g(x) > y \} dy \right) \mathbb{P}(X = x) = \sum_{x \in \mathbb{A}} g(x) \mathbb{P}(X = x).$$

(b) Por el Teorema 1.11 tenemos que

$$\mathbb{E}[g(X)] = \int_0^\infty \mathbb{P}(g(X) > y) dy = \int_0^\infty \left(\int_{\{x: g(x) > y\}} f(x) dx \right) dy$$
$$= \int_{-\infty}^\infty \left(\int_0^{g(x)} dy \right) f(x) dx = \int_{-\infty}^\infty g(x) f(x) dx.$$

(c) Se obtiene combinando adecuadamente los resultados (a) y (b).

Ejemplo 1.17. Aplicando la parte (a) del Teorema 1.16 al Ejemplo 1.14 se obtiene

$$\mathbb{E}[X^2] = 0^2(0.2) + 1^2(0.5) + 2^2(0.3) = 1.7.$$

Ejemplo 1.18. Aplicando la parte (b) del Teorema 1.16 al Ejemplo 1.15 se obtiene

$$\mathbb{E}[X^3] = \int_0^1 x^3 dx = \frac{1}{4}.$$

Teorema 1.19 (Cálculo de Esperanzas). Sea X un vector aleatorio y sea $g: \mathbb{R}^n \to \mathbb{R}$ una función tal que g(X) es una variable aleatoria. Si la variable aleatoria g(X) tiene esperanza finita, entonces

$$\mathbb{E}[g(\mathbf{X})] = \begin{cases} \sum_{\mathbf{x}} g(\mathbf{x}) p_{\mathbf{X}}(\mathbf{x}) & \text{en el caso discreto,} \\ \\ \int_{\mathbb{R}^n} g(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} & \text{en el caso continuo,} \end{cases}$$

donde, según sea el caso, $p_{\mathbf{X}}(\mathbf{x})$ y $f_{\mathbf{X}}(\mathbf{x})$ son la función de probabilidad y la densidad conjunta del vector \mathbf{X} , respectivamente.

Demostración. Enteramente análoga a la que hicimos en dimensión 1.

Sobre el cálculo de esperanzas. El Teorema 1.19 es una herramienta práctica para calcular esperanzas. Su resultado establece que si queremos calcular la esperanza de una transformación unidimensional del vector \mathbf{X} , $g(\mathbf{X})$, no necesitamos calcular la distribución de $g(\mathbf{X})$. La esperanza $\mathbb{E}[g(\mathbf{X})]$ puede calcularse directamente a partir del conocimiento de la distribución conjunta de \mathbf{X} .

Corolario 1.20 (Esperanza de las marginales). Sea $\mathbf{X} = (X_1, \dots, X_n)$ un vector aleatorio. Si la variable X_i tiene esperanza finita, entonces

$$\mathbb{E}[X_i] = \begin{cases} \sum_{\mathbf{x}} x_i p_{\mathbf{X}}(\mathbf{x}) & \text{en el caso discreto,} \\ \\ \int_{\mathbb{R}^n} x_i f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} & \text{en el caso continuo.} \end{cases}$$

1.3. Propiedades

- (a) Si X = 1, entonces $\mathbb{E}[X] = 1$.
- (b) Monotonía. Si X_1 y X_2 son dos variables aleatorias tales que $X_1 \leq X_2$, entonces $\mathbb{E}[X_1] \leq \mathbb{E}[X_2]$.
- (c) Si X es una variable aleatoria tal que $\mathbb{E}[X^n]$ es finita y a_0, a_1, \ldots, a_n son constantes, entonces

$$\mathbb{E}\left[\sum_{k=0}^{n} a_k X^k\right] = \sum_{k=0}^{n} a_k \mathbb{E}[X^k]. \tag{11}$$

(d) Linealidad. Si las variables aleatorias X_1, \ldots, X_n tienen esperanza finita y a_1, a_2, \ldots, a_n son constantes, entonces

$$\mathbb{E}\left[\sum_{i=1}^{n} a_i X_i\right] = \sum_{i=1}^{n} a_i \mathbb{E}[X_i]. \tag{12}$$

(e) Regla del producto independiente. Si las variables aleatorias X_1, \ldots, X_n tienen esperanza finita y son independientes, entonces el producto tiene esperanza finita y coincide con el producto de las esperanzas:

$$\mathbb{E}\left[\prod_{i=1}^{n} X_i\right] = \prod_{i=1}^{n} \mathbb{E}[X_i]. \tag{13}$$

Demostración. (a) es consecuencia inmediata de la Definición 1.1 porque $\mathbb{P}(X=1)=1$. (b) es consecuencia del Teorema 1.11 y de que para todo $x \in \mathbb{R}$ vale que $F_{X_1}(x) \geq F_{X_2}(x)$. (c) es consecuencia inmediata del Teorema 1.16. (d) es consecuencia inmediata del Teorema 1.19. (e) es consecuencia del Teorema 1.19 y de la factorización de la distribución conjunta como producto de las distribuciones marginales.

1.4. Dividir y conquistar

Teorema 1.21. Sea $(\Omega, \mathcal{A}, \mathbb{P})$ un espacio de probabilidad y sea $X : \Omega \to \mathbb{R}$ una variable aleatoria. Sea $A \subset \mathbb{R}$ un conjunto tal que $\{X \in A\} = \{\omega \in \Omega : X(\omega) \in A\} \in \mathcal{A}$. Si $\mathbb{P}(X \in A) > 0$, entonces

$$\mathbb{E}[X|X \in A] = \frac{1}{\mathbb{P}(X \in A)} \mathbb{E}[X\mathbf{1}\{X \in A\}]. \tag{14}$$

Demostración. Para simplificar la exposición vamos a suponer que la variable aleatoria X es discreta. Por la Definición 1.1 tenemos que

$$\mathbb{E}[X|X \in A] = \sum_{x \in X(\Omega)} x p_{X|X \in A}(x) = \sum_{x \in X(\Omega)} x \frac{\mathbb{P}(X = x)}{\mathbb{P}(X \in A)} \mathbf{1}\{x \in A\}$$
$$= \frac{1}{\mathbb{P}(X \in A)} \sum_{x \in X(\Omega)} x \mathbf{1}\{x \in A\} \mathbb{P}(X = x) = \frac{1}{\mathbb{P}(X \in A)} \mathbb{E}[X \mathbf{1}\{X \in A\}].$$

La última igualdad es consecuencia del Teorema 1.16.

Ejemplo 1.22. Sea X el resultado del tiro de un dado equilibrado y sea $A = \{2, 4, 6\}$. De acuerdo con (14) la esperanza de $X|X \in A$ es

$$\mathbb{E}[X|X \in A] = \frac{1}{\mathbb{P}(X \in A)} \mathbb{E}[X\mathbf{1}\{X \in A\}] = \frac{1}{1/2} \left(\frac{2}{6} + \frac{4}{6} + \frac{6}{6}\right) = 4.$$

Resultado que por otra parte es intuitivamente evidente.

Teorema 1.23 (Fórmula de probabilidad total). Sea X una variable aleatoria. Si A_1, \ldots, A_n es una partición medible de \mathbb{R} tal que $\mathbb{P}(X \in A_i) > 0$, $i = 1, \ldots, n$. Entonces,

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X|X \in A_i] \mathbb{P}(X \in A_i). \tag{15}$$

Demostración. Descomponemos la variable X como una suma de variables (dependientes de la partición) $X = \sum_{i=1}^{n} X \mathbf{1}\{X \in A_i\}$. Como la esperanza es un operador lineal tenemos que

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mathbf{1} \{ X \in A_i \}] = \sum_{i=1}^{n} \mathbb{E}[X | X \in A_i] \mathbb{P}(X \in A_i).$$

La última igualdad se obtiene de (14).

Nota Bene. Sea $g: \mathbb{R} \to \mathbb{R}$ una función tal que g(X) es una variable aleatoria. Bajo las hipótesis del Teorema 1.23 también vale que

$$\mathbb{E}[g(X)] = \sum_{i=1}^{n} \mathbb{E}[g(X)|X \in A_i] \mathbb{P}(X \in A_i). \tag{16}$$

La fórmula (16) se puede extender sin ninguna dificultad al caso multidimensional.

Ejemplo 1.24 (Dividir y conquistar). Todas las mañanas Lucas llega a la estación del subte entre las 7:10 y las 7:30 (con distribución uniforme en el intervalo). El subte llega a la estación cada quince minutos comenzando a las 6:00. Calcular la media del tiempo que tiene que esperar Lucas hasta subirse al subte.

Sea X el horario en que Lucas llega a la estación del subte. El tiempo que tiene que esperar hasta subtres al subte se describe por

$$T = (7.15 - X)\mathbf{1}\{X \in [7:10,7:15]\} + (7:30 - X)\mathbf{1}\{X \in (7:15,7:30]\}.$$

Ahora bien, dado que $X \in [7:10,7:15]$, la distribución de T es uniforme sobre el intervalo [0,5] minutos y dado que $X \in (7:15,7:30]$ la distribución de T es uniforme sobre el intervalo [0,15] minutos. De acuerdo con (16)

$$\mathbb{E}[T] = \frac{5}{2} \left(\frac{5}{20}\right) + \frac{15}{2} \left(\frac{15}{20}\right) = 6.25.$$

2. Varianza

2.1. Definición

La esperanza de una variable aleatoria X, $\mathbb{E}[X]$, también se conoce como la media o el primer momento de X. La cantidad $\mathbb{E}[X^n]$, $n \ge 1$, se llama el n-ésimo momento de X. Si la esperanza $\mathbb{E}[X]$ es finita, la cantidad $\mathbb{E}[(X - \mathbb{E}[X])^n]$ se llama el n-ésimo momento central.

Después de la esperanza la siguiente cantidad en orden de importancia para resumir el comportamiento de una variable aleatoria X es su segundo momento central también llamado la $varianza\ de\ X$.

Definición 2.1 (Varianza). Sea X una variable aleatoria con esperanza finita. La varianza de X se define por

$$\mathbb{V}(X) := \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]. \tag{17}$$

En otras palabras, la varianza de X es la esperanza de la variable aleatoria $(X - \mathbb{E}[X])^2$. Puesto que $(X - \mathbb{E}[X])^2$ sólo puede tomar valores no negativos, la varianza es no negativa.

La varianza de X es una de las formas más utilizadas para medir la dispersión de los valores de X respecto de su media. Otra medida de dispersión es el desvío estándar de X, que se define como la raíz cuadrada de la varianza y se denota $\sigma(X)$:

$$\sigma(X) := \sqrt{\mathbb{V}(X)}.\tag{18}$$

A diferencia de la varianza, el desvío estándar de una variable aleatoria es más fácil de interpretar porque tiene las mismas unidades de X.

Nota Bene: Grandes valores de $\mathbb{V}(X)$ significan grandes variaciones de los valores de X alrededor de la media. Al contrario, pequeños valores de $\mathbb{V}(X)$ implican una pronunciada concentración de la masa de la distribución de probabilidades en un entorno de la media. En el caso extremo, cuando la varianza es 0, la masa total de la distribución de probabilidades se concentra en la media. Estas afirmaciones pueden hacerse más precisas y serán desarrolladas en la sección 4.

2.2. Cálculo

Una manera "brutal" de calcular $\mathbb{V}(X)$ es calcular la función de distribución de la variable aleatoria $(X - \mathbb{E}[X])^2$ y usar la definición de esperanza. En lo que sigue mostraremos una manera más simple de realizar ese tipo cálculo.

Proposición 2.2 (Expresión de la varianza en términos de los momentos). Sea X una variable aleatoria con primer y segundo momentos finitos, entonces

$$\mathbb{V}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2. \tag{19}$$

En palabras, la varianza es la diferencia entre el segundo momento y el cuadrado del primer momento.

Demostración. Desarrollar el cuadrado $(X - \mathbb{E}[X])^2$ y usar las propiedades de la esperanza. Poniendo $(X - \mathbb{E}[X])^2 = X^2 - 2X\mathbb{E}[X] + \mathbb{E}[X]^2$ se obtiene

$$\mathbb{V}(X) = \mathbb{E}[X^2] - 2X\mathbb{E}[X] + \mathbb{E}[X]^2 = \mathbb{E}[X^2] - 2\mathbb{E}[X]^2 + \mathbb{E}[X]^2 = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

Ejemplo 2.3 (Varianza de la función indicadora). Sea $(\Omega, \mathcal{A}, \mathbb{P})$ un espacio de probabilidad. Para cualquier evento $A \in \mathcal{A}$ vale que

$$\mathbb{V}(\mathbf{1}\{\omega \in A\}) = \mathbb{E}[\mathbf{1}\{\omega \in A\}^2] - \mathbb{E}[\mathbf{1}\{\omega \in A\}]^2 = \mathbb{P}(A) - \mathbb{P}(A)^2 = \mathbb{P}(A)(1 - \mathbb{P}(A)). \tag{20}$$

Ejemplo 2.4 (Dado equilibrado). Sea X el resultado del lanzamiento de un dado equilibrado. Por el Ejemplo 1.3 sabemos que $\mathbb{E}[X] = 7/2$. Por otra parte

$$\mathbb{E}[X^2] = \sum_{x=1}^6 x^2 \mathbb{P}(X=x) = \frac{1}{6} \sum_{x=1}^6 x^2 = \frac{1+4+9+16+25+36}{6} = \frac{91}{6}.$$

Por lo tanto, de acuerdo con la Proposición 2.2, la varianza de X es

$$\mathbb{V}(X) = \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{32}{12} = \frac{8}{3}.$$

Ejemplo 2.5 (Fiabilidad). Sea T el tiempo de espera hasta que ocurre la primer falla en un sistema electrónico con función intensidad de fallas de la forma $\lambda(t) = 2t\mathbf{1}\{t > 0\}$. Por el Ejemplo 1.7 sabemos que $\mathbb{E}[T] = \sqrt{\pi}/2$. Por otra parte,

$$\mathbb{E}[T^{2}] = \int_{-\infty}^{\infty} t^{2} f(t) dt = \int_{0}^{\infty} t^{2} 2t \exp(-t^{2}) dt = \int_{0}^{\infty} x e^{-x} dx = 1.$$

La tercera igualdad se obtiene mediante el cambio de variables $t^2 = x$ y la cuarta se deduce usando la fórmula de integración por partes aplicada a u = x y $v' = e^{-x}$.

Por lo tanto, de acuerdo con la Proposición 2.2, la varianza de T es

$$\mathbb{V}(T) = 1 - \left(\frac{\sqrt{\pi}}{2}\right)^2 = 1 - \frac{\pi}{4}.$$

2.3. Propiedades

Proposición 2.6. Para todo $a, b \in \mathbb{R}$

$$V(aX + b) = a^2V(X). (21)$$

Demostración. Por definición,

$$\mathbb{V}(aX + b) = \mathbb{E}[(aX + b - \mathbb{E}[aX + b])^{2}] = \mathbb{E}[a^{2}(X - \mathbb{E}[X])^{2}] = a^{2}\mathbb{V}(X).$$

Para obtener la segunda igualdad usamos que $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$.

Error cuadrático medio. Una manera de "representar" la variable aleatoria X mediante un valor fijo $c \in \mathbb{R}$ es hallar el valor c que minimice el llamado error cuadrático medio, $\mathbb{E}[(X-c)^2]$.

Teorema 2.7 (Pitágoras). Sea X una variable aleatoria con esperanza y varianza finitas. Para toda constante $c \in \mathbb{R}$ vale que

$$\mathbb{E}[(X - c)^{2}] = \mathbb{V}(X)^{2} + (\mathbb{E}[X] - c)^{2}.$$

En particular, el valor de c que minimiza el error cuadrático medio es la esperanza de X, $\mathbb{E}[X]$.

Demostración. Escribiendo X-c en la forma $X-\mathbb{E}[X]+\mathbb{E}[X]-c$ y desarrollando cuadrados se obtiene $(X-c)^2=(X-\mathbb{E}[X])^2+(\mathbb{E}[X]-c)^2+2(X-\mathbb{E}[X])(\mathbb{E}[X]-c)$. El resultado se obtiene tomando esperanza en ambos lados de la igualdad y observando que $\mathbb{E}[X-\mathbb{E}[X]]=0$.

3. Covarianza

3.1. Definición

Definición 3.1 (Covarianza). Sean X e Y dos variables aleatorias de varianzas finitas definidas sobre el mismo espacio de probabilidad $(\Omega, \mathcal{A}, \mathbb{P})$. La *covarianza* de X e Y se define por

$$Cov(X,Y) := \mathbb{E}[(X - E[X])(Y - \mathbb{E}[Y])]. \tag{22}$$

3.2. Cálculo

Proposición 3.2. Sean X e Y dos variables aleatorias definidas sobre el mismo espacio de probabilidad $(\Omega, \mathcal{A}, \mathbb{P})$. Si los segundos momentos de las variables aleatorias X e Y son finitos, se tiene que

$$Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]. \tag{23}$$

Demostración. La esperanza del producto E[XY] es finita porque las esperanzas $\mathbb{E}[X^2]$ y $\mathbb{E}[Y^2]$ son finitas y vale que $|xy| \leq \frac{1}{2}(x^2 + y^2)$. Usando la propiedad distributiva del producto y la linealidad de la esperanza tenemos que

$$\begin{split} \mathbb{E}[(X - \mathbb{E}[X]) \, (Y - \mathbb{E}[Y])] &= \mathbb{E}[XY - \mathbb{E}[Y]X - \mathbb{E}[X]Y + \mathbb{E}[X]\mathbb{E}[Y]] \\ &= \mathbb{E}[XY] - \mathbb{E}[Y]\mathbb{E}[X] - \mathbb{E}[X]\mathbb{E}[Y] + \mathbb{E}[X]\mathbb{E}[Y] \\ &= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]. \end{split}$$

Ejemplo 3.3. Sea $(\Omega, \mathcal{A}, \mathbb{P})$ un espacio de probabilidad y sean $A \in \mathcal{A}$ y $B \in \mathcal{A}$ dos eventos de probabilidad positiva. Consideremos las variables aleatorias $X = \mathbf{1}\{\omega \in A\}$ e $Y = \mathbf{1}\{\omega \in B\}$. Entonces,

$$\begin{split} Cov(X,Y) &=& \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] \\ &=& \mathbb{P}(XY=1) - \mathbb{P}(X=1)\mathbb{P}(Y=1) \\ &=& \mathbb{P}(X=1,Y=1) - \mathbb{P}(X=1)\mathbb{P}(Y=1). \end{split}$$

La segunda y la tercera igualdad se obtienen de (2) observando que XY es una variable a valores 0 o 1 que vale 1 si y solo si X e Y son ambas 1.

Notamos que

$$\begin{aligned} Cov(X,Y) > 0 &\iff & \mathbb{P}(X=1,Y=1) > \mathbb{P}(X=1)\mathbb{P}(Y=1) \\ &\iff & \frac{\mathbb{P}(X=1,Y=1)}{\mathbb{P}(X=1)} > \mathbb{P}(Y=1) \\ &\iff & \mathbb{P}(Y=1|X=1) > \mathbb{P}(Y=1). \end{aligned}$$

En palabras, la covarianza de X e Y es positiva si y solamente si la condición X=1 aumenta la probabilidad de que Y=1.

Ejemplo 3.4. En una urna hay 6 bolas rojas y 4 bolas negras. Se extraen 2 bolas al azar sin reposición. Consideramos los eventos

$$A_i = \{$$
sale una bola roja en la *i*-ésima extracción $\}, i = 1, 2,$

y definimos las variables aleatorias X_1 y X_2 como las funciones indicadoras de los eventos A_1 y A_2 respectivamente. De acuerdo con el Ejemplo anterior es intuitivamente claro que $Cov(X_1, X_2) < 0$. (¿Por qué?)

$$Cov(X_1, X_2) = \mathbb{P}(X_1 = 1, X_2 = 1) - \mathbb{P}(X_1 = 1)\mathbb{P}(X_2 = 1) = \mathbb{P}(A_1 \cap A_2) - \mathbb{P}(A_1)\mathbb{P}(A_2)$$
$$= \frac{6}{10} \times \frac{5}{9} - \frac{6}{10} \left(\frac{5}{9} \times \frac{6}{10} + \frac{6}{9} \times \frac{4}{10}\right) = -\frac{2}{75} = -0.02666....$$

Nota Bene. Se puede mostrar que Cov(X,Y)>0 es una indicación de que Y tiende a crecer cuando X lo hace, mientras que Cov(X,Y)<0 es una indicación de que Y decrece cuando X crece. \Box

3.3. Propiedades

Lema 3.5 (Propiedades). Para variables aleatorias X, Y, Z y constantes a, valen las siguientes propiedades

- 1. Cov(X, X) = V(X),
- 2. Cov(X, Y) = Cov(Y, X),
- 3. Cov(aX, Y) = aCov(X, Y),
- 4. Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z).

Demostración. Ejercicio.

Sobre la esperanza del producto. Si se conoce la covarianza y la esperanza de las marginales, la identidad (23) puede ser útil para calcular la esperanza del producto:

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] + Cov(X,Y).$$

Nota Bene. Si X e Y son independientes, Cov(X,Y) = 0 porque $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$. Pero la $reciproca\ no\ es\ cierta$.

Ejemplo 3.6 (Dos bolas en dos urnas). El experimento aleatorio consiste en ubicar dos bolas distinguibles en dos urnas. Sean N la cantidad de urnas ocupadas y X_i la cantidad de bolas en la urna i. El espacio muestral se puede representar de la siguiente manera $\Omega = \{(1,1); (1,2); (2,1); (2,2)\}$. La función de probabilidad conjunta de N y X_1 se muestra en el Cuadro 1

Cuadro 1: Función de probabilidad conjunta de (N, X_1) .

Para calcular la esperanza del producto NX_1 usamos el Teorema 1.19

$$\mathbb{E}[NX_1] = 1 \cdot 1 \cdot p_{N,X_1}(1,1) + 1 \cdot 2 \cdot p_{N,X_1}(1,2) + 2 \cdot 1 \cdot p_{N,X_1}(2,1) + 2 \cdot 2 \cdot p_{N,X_1}(2,2)$$
$$= 1 \cdot 0 + 2 \cdot 1/4 + 2 \cdot 1/2 + 4 \cdot 0 = 3/2.$$

Es fácil ver que $\mathbb{E}[N] = 3/2$ y $\mathbb{E}[X_1] = 1$. Por lo tanto, $Cov(N, X_1) = 0$. Sin embargo, las variables N y X_1 no son independientes.

3.4. Varianza de sumas

Usando las propiedades de la covarianza enunciadas en Lema 3.5 se puede demostrar que

$$Cov\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_{i}, Y_{j})$$
 (24)

En particular, se obtiene que

$$\mathbb{V}\left(\sum_{i=1}^{n} X_{i}\right) = Cov\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{n} X_{j}\right) = \sum_{i=1}^{n} \mathbb{V}(X_{i}) + 2\sum_{i=1}^{n} \sum_{j < i} Cov(X_{i}, Y_{j}).$$
(25)

Finalmente, si las variables son independientes

$$\mathbb{V}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \mathbb{V}(X_i). \tag{26}$$

4. Algunas desigualdades

4.1. Cauchy-Schwartz

Teorema 4.1 (Cauchy-Schwartz).

$$\mathbb{E}[|XY|] \le (\mathbb{E}[X^2]\mathbb{E}[Y^2])^{1/2} \tag{27}$$

Demostración. Observar que para todo $t \in \mathbb{R}$:

$$0 \le \mathbb{E}[(t|X| + |Y|)^2] = t^2 \mathbb{E}[X^2] + 2t \mathbb{E}[|XY|] + \mathbb{E}[Y^2].$$

Como la función cuadrática en t que aparece en el lado derecho de la igualdad tiene a lo sumo una raíz real se deduce que

$$4\mathbb{E}[|XY|]^2 - 4\mathbb{E}[X^2]\mathbb{E}[Y^2] \le 0.$$

Por lo tanto,

$$\mathbb{E}[|XY|]^2 \le \mathbb{E}[X^2]\mathbb{E}[Y^2].$$

Corolario 4.2. Sea X una variable aleatoria tal que $\mathbb{E}[X^2] < \infty$. Si $a < \mathbb{E}[X]$, entonces

$$\mathbb{P}(X > a) \ge \frac{(\mathbb{E}[X] - a)^2}{\mathbb{E}[X^2]}.$$

Demostración. De la desigualdad $X\mathbf{1}\{X>a\} \leq |X\mathbf{1}\{X>a\}|$ y de la propiedad de monotonía de la esperanza se deduce que

$$\mathbb{E}[X\mathbf{1}\{X > a\}] \le E[|X\mathbf{1}\{X > a\}|]. \tag{28}$$

Aplicando la desigualdad de Cauchy-Schwartz a $|X1\{X>a\}|$ se obtiene que

$$\mathbb{E}[|X\mathbf{1}\{X>a\}|] \le (\mathbb{E}[X^2]\mathbb{E}[\mathbf{1}\{X>a\}^2])^{1/2} = (\mathbb{E}[X^2]\mathbb{P}(X>a))^{1/2}$$
(29)

Observando que $X = X\mathbf{1}\{X > a\} + X\mathbf{1}\{X \le a\}$ y que $X\mathbf{1}\{X \le a\} \le a$ se deduce que

$$\mathbb{E}[X] = \mathbb{E}[X\mathbf{1}\{X > a\}] + \mathbb{E}[X\mathbf{1}\{X \le a\}] \le \mathbb{E}[X\mathbf{1}\{X > a\}] + a$$

y en consecuencia,

$$\mathbb{E}[X] - a \le \mathbb{E}[X\mathbf{1}\{X > a\}]. \tag{30}$$

Combinando las desigualdades (30), (28) y (29) se obtiene que

$$\mathbb{E}[X] - a \le (\mathbb{E}[X^2]\mathbb{P}(X > a))^{1/2}$$

y como $\mathbb{E}[X] - a > 0$, elevando al cuadrado, se concluye que

$$(\mathbb{E}[X] - a)^2 \le \mathbb{E}[X^2] \mathbb{P}(X > a).$$

El resultado se obtiene despejando.

4.2. Chebyshev

Teorema 4.3 (Designaldad de Chebyshev). Sea $\varphi : \mathbb{R} \to \mathbb{R}$ tal que $\varphi \geq 0$ y $A \in \mathcal{B}(\mathbb{R})$. Sea $i_A := \inf\{\varphi(x) : x \in A\}$. Entonces,

$$i_A \mathbb{P}(X \in A) \le \mathbb{E}[\varphi(X)]$$
 (31)

Demostración. La definición de i_A y el hecho de que $\varphi \geq 0$ implican que

$$i_A \mathbf{1}\{X \in A\} \le \varphi(X) \mathbf{1}\{X \in A\} \le \varphi(X)$$

El resultado se obtiene tomando esperanza.

En lo que sigue enunciaremos algunos corolarios que se obtienen como casos particulares del Teorema 4.3.

Corolario 4.4 (Desigualdad de Markov). Sea X una variable aleatoria a valores no negativos. Para cada a > 0 vale que

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}.\tag{32}$$

Demostración. Aplicar la desigualdad de Chebyshev usando la función $\varphi(x) = x$ restringida a la semi-recta no negativa $[0, \infty)$ y el conjunto $A = [a, \infty)$ para obtener

$$a\mathbb{P}(X \ge a) \le \mathbb{E}[\varphi(X)] = \mathbb{E}[X].$$

y despejar.

Corolario 4.5. Sea a > 0. Vale que

$$\mathbb{P}(X > a) \le \frac{1}{a^2} \mathbb{E}[X^2]. \tag{33}$$

Demostración. Aplicar la desigualdad de Chebyshev usando la función $\varphi(x) = x^2$ y el conjunto $A = (a, \infty)$ para obtener

$$a^2 \mathbb{P}(X > a) \le \mathbb{E}[X^2]$$

y despejar. \Box

Corolario 4.6 (Pequeña desigualdad de Chebyshev). Sea X una variable aleatoria de varianza finita. Para cada a>0 vale que

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge a) \le \frac{\mathbb{V}(X)}{a^2}.$$
(34)

Demostración. Debido a que $(X - \mathbb{E}[X])^2$ es una variable aleatoria no negativa podemos aplicar la desigualdad de Markov (poniendo a^2 en lugar de a) y obtenemos

$$\mathbb{P}\left((X - \mathbb{E}[X])^2 \ge a^2\right) \le \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{a^2} = \frac{\mathbb{V}(X)}{a^2}.$$

La desigualdad $(X - \mathbb{E}[X])^2 \ge a^2$ es equivalente a la desigualdad $|X - \mathbb{E}[X]| \ge a$. Por lo tanto,

$$\mathbb{P}\left(|X - \mathbb{E}[X]| \ge a\right) \le \frac{\mathbb{V}(X)}{a^2}.$$

Lo que concluye la demostración.

Nota Bene. Grosso modo la pequeña desigualdad de Chebyshev establece que si la varianza es pequeña, los grandes desvíos respecto de la media son improbables.

Corolario 4.7. Sea X una variable aleatoria con varianza finita, entonces para cada $\alpha > 0$

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge \alpha \sigma(X)) \le \frac{1}{\alpha^2}.$$
 (35)

El resultado se obtiene poniendo $a = \alpha \sigma(X)$ en la pequeña desigualdad de Chebyshev.

Ejemplo 4.8. La cantidad X de artículos producidos por un fábrica durante una semana es una variable aleatoria de media 500.

(a) ¿Qué puede decirse sobre la probabilidad de que la producción semanal supere los 1000 artículos? Por la desigualdad de Markov,

$$\mathbb{P}(X \ge 1000) \le \frac{\mathbb{E}[X]}{1000} = \frac{500}{1000} = \frac{1}{2}.$$

(b) Si la varianza de la producción semanal es conocida e igual a 100, ¿qué puede decirse sobre la probabilidad de que la producción semanal se encuentre entre 400 y 600 artículos? Por la desigualdad de Chebyshev,

$$\mathbb{P}(|X - 500| \ge 100) \le \frac{\sigma^2}{(100)^2} = \frac{1}{100}.$$

Por lo tanto, $\mathbb{P}(|X-500|<100) \geq 1-\frac{1}{100}=\frac{99}{100}$, la probabilidad de que la producción semanal se encuentre entre 400 y 600 artículos es al menos 0.99.

El que mucho abarca poco aprieta. Las desigualdades de Markov y Chebyshev son importantes porque nos permiten deducir cotas sobre las probabilidades cuando solo se conocen la media o la media y la varianza de la distribución de probabilidades. Sin embargo, debe tenerse en cuenta que las desigualdades de Markov y de Chebyshev producen cotas universales que no dependen de las distribuciones de las variables aleatorias (dependen pura y exclusivamente de los valores de la esperanza y de la varianza). Por este motivo su comportamiento será bastante heterogéneo: en algunos casos producirán cotas extremadamente finas, pero en otros casos solamente cotas groseras.

5. La ley débil de los grandes números

Teorema 5.1 (Ley débil de los grandes números). Sea X_1, X_2, \ldots una sucesión de variables aleatorias independientes idénticamente distribuidas, tales que $\mathbb{V}(X_1) < \infty$. Sea $S_n, n \ge 1$, la sucesión de las sumas parciales definida por $S_n := \sum_{i=1}^n X_i$. Entonces, para cualquier $\epsilon > 0$

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\frac{S_n}{n}-\mathbb{E}[X_1]\right|>\epsilon\right)=0.$$

Demostración. Se obtiene aplicando la desigualdad de Chebyshev a la variable aleatoria S_n/n . Usando que la esperanza es un operador lineal se obtiene que

$$\mathbb{E}\left[S_n/n\right] = \frac{1}{n}\mathbb{E}\left[\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[X_i] = \mathbb{E}[X_1].$$

Como las variables X_1, X_2, \ldots son independientes tenemos que

$$\mathbb{V}(S_n/n) = \frac{1}{n^2} \mathbb{V}\left(\sum_{i=1}^n X_i\right) = \frac{1}{n^2} \sum_{i=1}^n \mathbb{V}(X_i) = \frac{\mathbb{V}(X_1)}{n}.$$

Entonces, por la desigualdad de Chebyshev, obtenemos la siguiente estimación

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mathbb{E}[X_1]\right| > \epsilon\right) \le \frac{\mathbb{V}(X_1)}{n\epsilon^2}.$$
 (36)

Como $\mathbb{V}(X_1) < \infty$ el lado derecho de la última designaldad tiende a 0 cuando $n \to \infty$.

Nota Bene. La ley débil de los grandes números establecida en el Teorema 5.1 sirve como base para la noción intuitiva de probabilidad como medida de las frecuencias relativas. La proposición "en una larga serie de ensayos idénticos la frecuencia relativa del evento A se aproxima a su probabilidad $\mathbb{P}(A)$ " se puede hacer teóricamente más precisa de la siguiente manera: el resultado de cada ensayo se representa por una variable aleatoria (independiente de las demás) que vale 1 cuando se obtiene el evento A y vale cero en caso contrario. La expresión "una larga serie de ensayos" adopta la forma de una sucesión X_1, X_2, \ldots de variables aleatorias independientes cada una con la misma distribución que la indicadora del evento A. Notar que $X_i = 1$ significa que "en el i-ésimo ensayo ocurrió el evento A" y la suma parcial $S_n = \sum_{i=1}^n X_i$ representa la "frecuencia del evento A" en los primeros n ensayos. Puesto que $\mathbb{E}[X_1] = \mathbb{P}(A)$ y $\mathbb{V}(X_1) = \mathbb{P}(A)(1 - \mathbb{P}(A))$ la estimación (36) adopta la forma

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mathbb{P}(A)\right| > \epsilon\right) \le \frac{\mathbb{P}(A)(1 - \mathbb{P}(A))}{n\epsilon^2}.$$
 (37)

Por lo tanto, la probabilidad de que la frecuencia relativa del evento A se desvíe de su probabilidad $\mathbb{P}(A)$ en más de una cantidad prefijada ϵ , puede hacerse todo lo chica que se quiera, siempre que la cantidad de ensayos n sea suficientemente grande.

Ejemplo 5.2 (Encuesta electoral). Se quiere estimar la proporción del electorado que pretende votar a un cierto candidato. Cuál debe ser el tamaño muestral para garantizar un determinado *error* entre la proporción poblacional, p, y la proporción muestral S_n/n ?

Antes de resolver este problema, debemos reflexionar sobre la definición de error. Habitualmente, cuando se habla de error, se trata de un número real que expresa la (in)capacidad de una cierta cantidad de representar a otra. En los problemas de estimación estadística, debido a que una de las cantidades es una variable aleatoria y la otra no lo es, no es posible interpretar de un modo tan sencillo el significado de la palabra error.

Toda medida muestral tiene asociada una incerteza (o un riesgo) expresada por un modelo probabilístico. En este problema consideramos que el voto de cada elector se comporta como una variable aleatoria X tal que $\mathbb{P}(X=1)=p$ y $\mathbb{P}(X=0)=1-p$, donde X=1 significa que el elector vota por el candidato considerado. Por lo tanto, cuando se habla de que queremos encontrar un tamaño muestral suficiente para un determinado error máximo, por ejemplo 0.02, tenemos que hacerlo con una medida de certeza asociada. Matemáticamente, queremos encontrar n tal que $\mathbb{P}\left(\left|\frac{S_n}{n}-p\right|\leq 0.02\right)\geq 0.9999$ o, equivalentemente, queremos encontrar n tal que

$$\mathbb{P}\left(\left|\frac{S_n}{n} - p\right| > 0.02\right) \le 0.0001.$$

Usando la estimación (37) se deduce que

$$\mathbb{P}\left(\left|\frac{S_n}{n} - p\right| > 0.02\right) \le \frac{p(1-p)}{n(0.02)^2}.$$

El numerador de la fracción que aparece en el lado derecho de la estimación depende de p y el valor de p es desconocido. Sin embargo, sabemos que p(1-p) es una parábola convexa con raíces en p=0 y p=1 y por lo tanto su máximo ocurre cuando p=1/2, esto es $p(1-p) \le 1/4$. En la peor hipótesis tenemos:

$$\mathbb{P}\left(\left|\frac{S_n}{n} - p\right| > 0.02\right) \le \frac{1}{4n(0.02)^2}.$$

Como máximo estamos dispuestos a correr un riesgo de 0.0001 y en el peor caso tenemos acotada la máxima incerteza por $(4n(0.02)^2)^{-1}$. El problema se reduce a resolver la desigualdad $(4n(0.02)^2)^{-1} \le 0.0001$. Por lo tanto,

$$n \ge ((0.0001)\dot{4}(0.02)^2)^{-1} = 6250000.$$

Una cifra absurdamente grande!! Más adelante, mostraremos que existen métodos más sofisticados que permiten disminuir el tamaño de la muestra.

6. Distribuciones particulares

Para facilitar referencias posteriores presentaremos tablas de esperanzas y varianzas de algunas distribuciones importantes de uso frecuente y describiremos el método para obtener-las.

Discretas

No.	Nombre	Probabilidad	Soporte	Esperanza	Varianza	
1.	Uniforme	$\frac{1}{b-a+1}$	$a \le x \le b$	(a+b)/2	(b-a)(b-a-2)/12	
2.	Bernoulli	$p^x(1-p)^{1-x}$	$x \in \{0, 1\}$	p	p(1-p)	
3.	Binomial	$\binom{n}{x}p^x(1-p)^{n-x}$	$0 \le x \le n$	np	np(1-p)	
4.	Geométrica		$x \in \mathbb{N}$	1/p	$(1-p)/p^2$	
5.	Poisson	$\frac{\lambda^x}{x!}e^{-\lambda}$	$x \in \mathbb{N}_0$	λ	λ	

Cuadro 2: Esperanza y varianza de algunas distribuciones discretas de uso frecuente.

Continuas

No.	Nombre	Densidad	Soporte	Esperanza	Varianza
1.	Uniforme	$\frac{1}{b-a}$	$x \in [a, b]$	(a+b)/2	$(b-a)^2/12$
2.	Exponencial	$\lambda e^{-\lambda x}$	x > 0	$1/\lambda$	$1/\lambda^2$
3.	Gamma	$\frac{\lambda^{\nu}}{\Gamma(\nu)} x^{\nu-1} e^{-\lambda x}$	x > 0	$ u/\lambda$	$ u/\lambda^2$
4.	Beta	$\frac{\Gamma(\nu_1 + \nu_2)}{\Gamma(\nu_1)\Gamma(\nu_2)} x^{\nu_1 - 1} (1 - x)^{\nu_2 - 1}$	$x \in (0,1)$	$\frac{\nu_1}{\nu_1 + \nu_2}$	$\frac{\nu_1\nu_2}{(\nu_1+\nu_2)^2(\nu_1+\nu_2+1)}$
5.	Normal	$\frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2

Cuadro 3: Esperanza y varianza de algunas distribuciones continuas de uso frecuente.

Cuentas con variables discretas

1. Distribución uniforme discreta.

Sean a y b dos números enteros tales que a < b. Se dice que la variable aleatoria X tiene distribución uniforme sobre el "intervalo" de números enteros $[a,b] := \{a,a+1,\ldots,b\}$, y se denota $X \sim \mathcal{U}[a,b]$, si X es discreta y tal que

$$\mathbb{P}(X = x) = \frac{1}{b - a + 1} \mathbf{1} \{ x \in \{a, a + 1, \dots, b\} \}.$$

Notando que la distribución de X coincide con la de la variable $X^* + a - 1$, donde X^* está uniformemente distribuida sobre $\{1, \ldots, b - a + 1\}$, resulta que

$$\mathbb{E}[X] = \mathbb{E}[X^*] + a - 1 = \frac{1 + (b - a + 1)}{2} + a - 1 = \frac{a + b}{2}.$$

Para calcular la varianza de X, consideramos primero el caso más simple donde a=1 y b=n. Por inducción en n se puede ver que

$$\mathbb{E}[X^2] = \frac{1}{n} \sum_{k=1}^{n} k^2 = \frac{(n+1)(2n+1)}{6}.$$

La varianza puede obtenerse en términos de los momentos de orden 1 y 2:

$$\mathbb{V}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4}$$
$$= \frac{(n+1)[2(2n+1) - 3(n+1)]}{12} = \frac{n^2 - 1}{12}.$$

Para el caso general, notamos que la variable aleatoria uniformemente distribuida sobre [a, b] tiene la misma varianza que la variable aleatoria uniformemente distribuida sobre [1, b-a+1], puesto que esas dos variables difieren en la constante a-1. Por lo tanto, la varianza buscada se obtiene de la fórmula anterior sustituyendo n=b-a+1

$$\mathbb{V}(X) = \frac{(b-a+1)^2 - 1}{12} = \frac{(b-a)(b-a+2)}{12}.$$

2. Distribución Bernoulli.

Sea $p \in (0,1)$. Se dice que la variable aleatoria X tiene distribución Bernoulli de parámetro p, y se denota $X \sim Bernoulli(p)$, si X es discreta y tal que

$$\mathbb{P}(X = x) = p^x (1 - p)^{1 - x}$$
, donde $x = 0, 1$.

Por definición,

$$\mathbb{E}[X] = 0 \cdot \mathbb{P}(X = 0) + 1 \cdot \mathbb{P}(X = 1) = 0 \cdot (1 - p) + 1 \cdot p = p.$$

Por otra parte,

$$\mathbb{E}[X^2] = 0^2 \cdot \mathbb{P}(X = 0) + 1^2 \cdot \mathbb{P}(X = 1) = p.$$

Por lo tanto,

$$\mathbb{V}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = p - p^2 = p(1 - p).$$

3. Distribución Binomial.

Sean $p \in (0,1)$ y $n \in \mathbb{N}$. Se dice que la variable aleatoria X tiene distribución Binomial de parámetros n y p, y se denota $X \sim \text{Binomial } (n,p)$, si X es discreta y tal que

$$\mathbb{P}(X=x) = \binom{n}{x} p^x (1-p)^{n-x}$$
, donde $x = 0, 1, \dots, n$.

Por definición,

$$\mathbb{E}[X] = \sum_{x=0}^{n} x \mathbb{P}(X=x) = \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x} = \sum_{x=1}^{n} \frac{xn!}{(n-x)!x!} p^{x} (1-p)^{n-x}$$

$$= \sum_{x=1}^{n} \frac{n!}{(n-x)!(x-1)!} p^{x} (1-p)^{n-x} = np \sum_{x=1}^{n} \frac{(n-1)!}{(n-x)!(x-1)!} p^{x-1} (1-p)^{n-x}$$

$$= np \sum_{y=0}^{n-1} \binom{n-1}{y} p^{y} (1-p)^{n-1-y} = np(p+(1-p))^{n-1} = np.$$

Análogamente se puede ver que

$$\mathbb{E}[X^2] = np((n-1)p + 1).$$

Por lo tanto,

$$V(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = np((n-1)p+1) - (np)^2$$

= $np((n-1)p+1 - np) = np(1-p).$

4. Distribución Geométrica.

Sea $p \in (0,1)$. Se dice que la variable aleatoria X tiene distribución Geométrica de parámetro p, y se denota $X \sim \text{Geométrica}(p)$, si X es discreta y tal que

$$\mathbb{P}(X=x) = (1-p)^{x-1} p \mathbf{1} \{ x \in \mathbb{N} \}.$$

Por definición,

$$\mathbb{E}[X] = \sum_{x=1}^{\infty} x \mathbb{P}(X = x) = \sum_{x=1}^{\infty} x (1-p)^{x-1} p = p \sum_{x=1}^{\infty} x (1-p)^{x-1}.$$

La serie se calcula observando que $x(1-p)^{x-1} = -\frac{d}{dp}(1-p)^x$ y recordando que las series de potencias se pueden derivar término a término:

$$\sum_{n=1}^{\infty} x(1-p)^{x-1} = -\frac{d}{dp} \sum_{n=1}^{\infty} (1-p)^x = -\frac{d}{dp} \left(p^{-1} - 1 \right) = p^{-2}.$$

Por lo tanto, $\mathbb{E}[X] = p \cdot p^{-2} = 1/p$.

Para calcular $\mathbb{V}(X)$ usaremos la misma técnica: derivamos dos veces ambos lados de la igualdad $\sum_{x=1}^{\infty}(1-p)^{x-1}=p^{-1}$ y obtenemos

$$2p^{-3} = \frac{d^2}{dp^2}p^{-1} = \frac{d^2}{dp^2} \sum_{x=1}^{\infty} (1-p)^{x-1} = \sum_{x=1}^{\infty} (x-1)(x-2)(1-p)^{x-3}$$
$$= \sum_{x=1}^{\infty} (x+1)x(1-p)^{x-1} = \sum_{x=1}^{\infty} x^2(1-p)^{x-1} + \sum_{x=1}^{\infty} x(1-p)^{x-1}.$$

Multiplicando por p los miembros de las igualdades obtenemos, $2p^{-2} = \mathbb{E}[X^2] + \mathbb{E}[X] = \mathbb{E}[X^2] + p^{-1}$. En consecuencia, $\mathbb{E}[X^2] = 2p^{-2} - p^{-1}$. Por lo tanto,

$$\mathbb{V}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = 2p^{-2} - p^{-1} - p^{-2} = p^{-2} - p^{-1} = p^{-2}(1-p).$$

5. Distribución de Poisson.

Sea $\lambda > 0$. Se dice que la variable aleatoria X tiene distribución de Poisson de intensidad λ , y se denota $X \sim Poisson(\lambda)$, si X es discreta y tal que

$$\mathbb{P}(X=x) = \frac{\lambda^x}{x!} e^{-\lambda} \mathbf{1} \{ x \in \mathbb{N}_0 \}.$$

Por definición,

$$\mathbb{E}[X] = \sum_{x=0}^{\infty} x \mathbb{P}(X=x) = \sum_{x=0}^{\infty} x \frac{\lambda^x}{x!} e^{-\lambda} = \lambda e^{-\lambda} \sum_{x=1}^{\infty} x \frac{\lambda^{x-1}}{x!} = \lambda e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!} = \lambda e^{-\lambda} e^{\lambda}$$

$$= \lambda$$

Derivando término a término, se puede ver que

$$\mathbb{E}[X^2] = \sum_{x=0}^{\infty} x^2 \mathbb{P}(X = x) = \sum_{x=0}^{\infty} x^2 \frac{\lambda^x}{x!} e^{-\lambda} = \lambda e^{-\lambda} \sum_{x=1}^{\infty} x^2 \frac{\lambda^{x-1}}{x!} = \lambda e^{-\lambda} \sum_{x=1}^{\infty} \frac{x \lambda^{x-1}}{(x-1)!}$$

$$= \lambda e^{-\lambda} \frac{d}{d\lambda} \sum_{x=1}^{\infty} \frac{\lambda^x}{(x-1)!} = \lambda e^{-\lambda} \frac{d}{d\lambda} \left(\lambda e^{\lambda}\right) = \lambda e^{-\lambda} \left(e^{\lambda} + \lambda e^{\lambda}\right) = \lambda + \lambda^2.$$

Por lo tanto,

$$\mathbb{V}(X) = \mathbb{E}[X^2] - \mathbb{E}[X] = \lambda + \lambda^2 - \lambda^2 = \lambda.$$

Cuentas con variables continuas

1. Distribución uniforme.

Sean a < b. Se dice que la variable aleatoria X tiene distribución uniforme sobre el intervalo [a,b], y se denota $X \sim \mathcal{U}[a,b]$, si X es absolutamente continua con densidad de probabilidades

$$f(x) = \frac{1}{b-a} \mathbf{1} \{ x \in [a, b] \}.$$

Por definición,

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{\infty} x \frac{1}{b-a} \mathbf{1} \{ x \in [a,b] \} dx = \frac{1}{b-a} \int_{a}^{b} x dx = \frac{1}{b-a} \left(\frac{b^2 - a^2}{2} \right)$$
$$= \frac{a+b}{2}.$$

Por otra parte,

$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 f(x) dx = \frac{1}{b-a} \int_a^b x^2 dx = \frac{1}{b-a} \left(\frac{b^3 - a^3}{3} \right) = \frac{a^2 + ab + b^2}{3}.$$

Finalmente,

$$\mathbb{V}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{a^2 + ab + b^2}{3} - \left(\frac{a+b}{2}\right)^2 = \frac{a^2 - 2ab + b^2}{12} = \frac{(b-a)^2}{12}.$$

2. Distribución exponencial.

Sea $\lambda > 0$. Se dice que la variable aleatoria X tiene distribución exponencial de intensidad λ , y se denota $X \sim \text{Exp}(\lambda)$, si X es absolutamente continua con función densidad de probabilidades

$$f(x) = \lambda e^{-\lambda x} \mathbf{1} \{ x \ge 0 \}.$$

El cálculo de $\mathbb{E}[X]$ y $\mathbb{V}(X)$ se reduce al caso $X \sim \text{Exp}(1)$. Basta observar que $Y \sim \text{Exp}(\lambda)$ si y solo si $Y = \lambda^{-1}X$, donde $X \sim \text{Exp}(1)$ y usar las identidades $\mathbb{E}[\lambda^{-1}X] = \lambda^{-1}\mathbb{E}[X]$ y $\mathbb{V}(\lambda^{-1}X) = \lambda^{-2}\mathbb{V}(X)$. En lo que sigue suponemos que $X \sim \text{Exp}(1)$.

Integrando por partes se obtiene,

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{\infty} x e^{-x} \mathbf{1} \{ x \ge 0 \} = \int_{0}^{\infty} \lambda x e^{-x} dx = -x e^{-x} \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-x} dx$$

Por otra parte,

$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 f(x) dx = \int_{0}^{\infty} x^2 e^{-x} dx = -x^2 e^{-x} \Big|_{0}^{\infty} + \int_{0}^{\infty} 2x e^{-x} dx = 2.$$

Por lo tanto, $\mathbb{V}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = 2 - 1 = 1$.

3. Distribución gamma.

La función gamma se define por

$$\Gamma(t) := \int_0^\infty x^{t-1} e^{-x} dx \qquad t > 0.$$

Integrando por partes puede verse que $\Gamma(t) = (t-1)\Gamma(t-1)$ para todo t > 0. De aquí se deduce que la función gamma interpola a los números factoriales en el sentido de que

$$\Gamma(n+1) = n!$$
 para $n = 0, 1, ...$

Sean $\lambda > 0$ y $\nu > 0$. Se dice que la variable aleatoria X tiene distribución gamma de parámetros ν , λ , y se denota $X \sim \Gamma(\nu, \lambda)$, si X es absolutamente continua con función densidad de probabilidades

$$f(x) = \frac{\lambda^{\nu}}{\Gamma(\nu)} x^{\nu - 1} e^{-\lambda x} \mathbf{1} \{x > 0\}.$$

El cálculo de $\mathbb{E}[X]$ y $\mathbb{V}(X)$ se reduce al caso $X \sim \Gamma(\nu, 1)$. Para ello, basta observar que $Y \sim \Gamma(\nu, \lambda)$ si y solo si $Y = \lambda^{-1}X$, donde $X \sim \Gamma(\nu, 1)$ y usar las identidades $\mathbb{E}[\lambda^{-1}X] = \lambda^{-1}\mathbb{E}[X]$ y $\mathbb{V}(\lambda^{-1}X) = \lambda^{-2}\mathbb{V}(X)$. En lo que sigue suponemos que $X \sim \Gamma(\nu, 1)$

$$\mathbb{E}[X] = \int_0^\infty x f(x) \, dx = \int_0^\infty \frac{1}{\Gamma(\nu)} x^{\nu} e^{-x} dx = \frac{1}{\Gamma(\nu)} \Gamma(\nu + 1) = \nu.$$

Del mismo modo se puede ver que $\mathbb{E}[X^2] = (\nu + 1)\nu = \nu^2 + \nu$. Por lo tanto, $\mathbb{V}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \nu$.

4. Distribución beta

Sean $\nu_1 > 0$ y $\nu_2 > 0$. Se dice que la variable aleatoria X tiene distribución beta de parámetros ν_1 , ν_2 , y se denota $X \sim \beta(\nu_1, \nu_2)$, si X es absolutamente continua con función densidad de probabilidades

$$f(x) = \frac{\Gamma(\nu_1 + \nu_2)}{\Gamma(\nu_1)\Gamma(\nu_2)} x^{\nu_1 - 1} (1 - x)^{\nu_2 - 1} \mathbf{1} \{ x \in (0, 1) \}.$$

Por definición,

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{\infty} x \frac{\Gamma(\nu_1 + \nu_2)}{\Gamma(\nu_1) \Gamma(\nu_2)} x^{\nu_1 - 1} (1 - x)^{\nu_2 - 1} \mathbf{1} \{ x \in (0, 1) \} dx$$
$$= \frac{\Gamma(\nu_1 + \nu_2)}{\Gamma(\nu_1) \Gamma(\nu_2)} \int_{0}^{1} x^{\nu_1} (1 - x)^{\nu_2 - 1} dx = \frac{\Gamma(\nu_1 + \nu_2)}{\Gamma(\nu_1) \Gamma(\nu_2)} \frac{\Gamma(\nu_1 + 1) \Gamma(\nu_2)}{\Gamma(\nu_1 + \nu_2 + 1)} = \frac{\nu_1}{\nu_1 + \nu_2}$$

Por otra parte,

$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 f(x) dx = \frac{\Gamma(\nu_1 + \nu_2)}{\Gamma(\nu_1)\Gamma(\nu_2)} \int_0^1 x^{\nu_1 + 1} (1 - x)^{\nu_2 - 1} dx$$
$$= \frac{\Gamma(\nu_1 + \nu_2)}{\Gamma(\nu_1)\Gamma(\nu_2)} \frac{\Gamma(\nu_1 + 2)\Gamma(\nu_2)}{\Gamma(\nu_1 + \nu_2 + 2)} = \frac{\nu_1(\nu_1 + 1)}{(\nu_1 + \nu_2)(\nu_1 + \nu_2 + 1)}$$

Finalmente,

$$\mathbb{V}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \frac{\nu_1(\nu_1 + 1)}{(\nu_1 + \nu_2)(\nu_1 + \nu_2 + 1)} - \left(\frac{\nu_1}{\nu_1 + \nu_2}\right)^2$$
$$= \frac{\nu_1\nu_2}{(\nu_1 + \nu_2)^2(\nu_1 + \nu_2 + 1)}.$$

5. Distribución normal.

Sean $\mu \in \mathbb{R}$ y $\sigma > 0$. Se dice que la variable aleatoria X tiene distribución normal de parámetros μ , σ^2 , y se denota $X \sim \mathcal{N}(\mu, \sigma^2)$, si X es absolutamente continua con función densidad de probabilidades

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}.$$

El cálculo de $\mathbb{E}[X]$ y $\mathbb{V}(X)$ se reduce al caso $X \sim \mathcal{N}(0,1)$. Para ello, basta observar que $Y \sim \mathcal{N}(\mu, \sigma^2)$ si y solo si $Y = \sigma X + \mu$, donde $X \sim \mathcal{N}(0,1)$ y usar las identidades $\mathbb{E}[\sigma X + \mu] = \sigma \mathbb{E}[X] + \mu$ y $\mathbb{V}(\sigma X + \mu) = \sigma^2 \mathbb{V}(X)$. En lo que sigue suponemos que $X \sim \mathcal{N}(0,1)$ y denotamos su densidad mediante

$$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

Es evidente que $\mathbb{E}[X] = 0$. En consecuencia,

$$\mathbb{V}(X) = \mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \varphi(x) dx$$

Observando que $\varphi'(x) = -x\varphi(x)$ e integrando por partes se obtiene,

$$\mathbb{V}(X) = \int_{-\infty}^{\infty} x(x\varphi(x))dx = -x\varphi(x)\Big|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \varphi(x)dx = 0 + 1.$$

7. Bibliografía consultada

Para redactar estas notas se consultaron los siguientes libros:

1. Bertsekas, D. P., Tsitsiklis, J. N.: Introduction to Probability. M.I.T. Lecture Notes. (2000)

- 2. Billingsley, P.: Probability and Measure. John Wiley & Sons, New York. (1986)
- 3. Durrett, R. Elementary Probability for Applications. Cambridge University Press, New York. (2009)
- 4. Feller, W.: An introduction to Probability Theory and Its Applications. Vol. 1. John Wiley & Sons, New York. (1957)
- 5. Kolmogorov, A. N.: The Theory of Probability. Mathematics. Its Content, Methods, and Meaning. Vol 2. The M.I.T. Press, Massachusetts. (1963) pp. 229-264.
- 6. Ross, S.: Introduction to Probability and Statistics for Engineers and Scientists. Academic Press, San Diego. (2004)
- 7. Ross, S.: Introduction to Probability Models. Academic Press, San Diego. (2007)
- 8. Soong, T. T.: Fundamentals of Probability and Statistics for Engineers. John Wiley & Sons Ltd. (2004)