FACULTAD DE INGENIERIA-UBA

ALGEBRA II. Primer cuatrimestre de 2013

EXAMEN PARCIAL - 15 de junio de 2013(Segunda oportunidad)

TEMA 1

Apellido y nombres:	
Número de padrón:	Curso:

Justifique todas las respuestas. Numere las hojas y firme al final del examen. El examen se aprueba resolviendo correctamente 3 ejercicios

1.

(a) Probar que existe una única transformación lineal $f: P_2 \to \mathbb{R}^3$ tal que:

$$f(1+t) = (3 \ 1 \ 0)^T, \qquad f(t+t^2) = (1 \ 2 \ 1)^T, \qquad f(t) = (2 \ 1 \ 0)^T.$$

Calcular $f(5+6t-3t^2)$

(b) Probar que la transformación lineal definida en el item anterior es biyectiva y calcular la matriz de f^{-1} respecto de las bases canónicas de \mathbb{R}^3 y P_2 .

2. Consideremos el producto interno canónico en \mathbb{R}^n .

(a) Hallar la matriz de proyección sobre Fil(A) para una matriz $A \in \mathbb{R}^{2\times 3}$ tal que

$$A^T A = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 2 \end{array}\right).$$

(b) Hallar la matriz de proyección $P \in \mathbb{R}^{4 \times 4}$ que verifica $P(1\ 2\ -1\ 2)^T = (2\ 1\ 0\ 1)^T$ y $P(-1\ 1\ 1\ -1)^T = (-1\ 0\ 1\ 0)^T$.

3. Sea $A \in \mathbb{R}^{3\times 3}$ tal que $Fil(A)^{\perp} = \{x \in \mathbb{R}^3 / x_1 + x_2 - x_3 = 0; 2x_1 + x_3 = 0\}$. Sabiendo que $P_{Col(A)}(1\ 0\ 1)^t = 3col_1 + 2col_2 - col_3$ (donde col_i indica la *i*-ésima columna de A), hallar las soluciones

por cuadrados mínimos de
$$Ax = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
.

4. Consideremos en P_2 el producto interno (p,q) = p(0)q(0) + p(1)q(1) + p(-1)q(-1) y la transformación lineal $T: P_2 \to P_2$ dada por

$$(T(p))(t) = (p(0) - p'(0))(t^2 + 1).$$

Dado q(t)=3t+1, hallar todos los $p\in P_2$ para los cuales la distancia entre T(p) y q es mínima.

5. Sean $\mathbb V$ un espacio vectorial real con producto interno (\cdot,\cdot) y $B=\{v_1,v_2,v_3\}$ una base de $\mathbb V$ tal que $\{v_1,v_1-v_2,v_1+v_2-v_3\}$ es una base ortonormal de $\mathbb V$. Dado $S=gen\{v_1,v_1+v_3\}$, hallar todos los $v\in\mathbb V$ tales que $\|P_{S^\perp}(v)\|=\|v\|=1$.

FACULTAD DE INGENIERIA-UBA

ALGEBRA II. Primer cuatrimestre de 2013

EXAMEN PARCIAL - 15 de junio de 2013(Segunda oportunidad)

TEMA 2

Apellido y nombres:	
Número de padrón:	Curso:

Justifique todas las respuestas. Numere las hojas y firme al final del examen. El examen se aprueba resolviendo correctamente 3 ejercicios

1.

(a) Probar que existe una única transformación lineal $f: P_2 \to \mathbb{R}^3$ tal que:

$$f(1+t^2) = (1\ 3\ 0)^T, \qquad f(t+t^2) = (2\ 1\ 1)^T, \qquad f(t^2) = (1\ 2\ 0)^T.$$

Calcular $f(3-5t+4t^2)$

(b) Probar que la transformación lineal definida en el item anterior es biyectiva y calcular la matriz de f^{-1} respecto de las bases canónicas de \mathbb{R}^3 y P_2 .

2. Consideremos el producto interno canónico en \mathbb{R}^n .

(a) Hallar la matriz de proyección sobre Fil(A) para una matriz $A \in \mathbb{R}^{2 \times 3}$ tal que

$$A^T A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 1 & -1 \\ 2 & -1 & 2 \end{array} \right).$$

(b) Hallar la matriz de proyección $P \in \mathbb{R}^{4\times 4}$ que verifica $P(-1\ 0\ 1\ 2)^T = (-1\ -1\ 1\ 1)^T$ y $P(3\ 0\ -1\ 0)^T = (2\ 1\ 0\ -1)^T$.

3. Sea $A \in \mathbb{R}^{3\times 3}$ tal que $Fil(A)^{\perp} = \{x \in \mathbb{R}^3 / x_1 - x_2 + x_3 = 0; x_1 + 2x_2 = 0\}$. Sabiendo que $P_{Col(A)}(0\ 1\ 1)^t = 5col_1 - col_2 + 4col_3$ (donde col_i indica la *i*-ésima columna de A), hallar las soluciones

por cuadrados mínimos de
$$Ax = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
.

4. Consideremos en P_2 el producto interno (p,q)=p(0)q(0)+p(1)q(1)+p(-1)q(-1) y la transformación lineal $T:P_2\to P_2$ dada por

$$(T(p))(t) = (p(1) - p'(1))(t^2 + 1).$$

Dado q(t)=t+3, hallar todos los $p\in P_2$ para los cuales la distancia entre T(p) y q es mínima.

5. Sean \mathbb{V} un espacio vectorial real con producto interno (\cdot,\cdot) y $B = \{v_1, v_2, v_3\}$ una base de \mathbb{V} tal que $\{v_2, v_2 - v_3, v_2 + v_3 - v_1\}$ es una base ortonormal de \mathbb{V} . Dado $S = gen\{v_2, v_1 + v_2\}$, hallar todos los $v \in \mathbb{V}$ tales que $||P_{S^{\perp}}(v)|| = ||v|| = 1$.