FINAL de MATEMÁTICA DISCRETA 17 de Julio de 2012

APELLIDO Y NOMBRE				<u>Padrón</u>	Curso
Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4	Ejercicio 5	calificación

Ejercicio 1:

Considere la relación de recurrencia de 2do orden: $a_n + (a-3)a_{n-1} + aa_{n-2} = (-3)^n$ Halle el valor de la constante \boldsymbol{a} para que la relación de recurrencia homogénea asociada admita una única solución de la forma $a_n = r^n$ con $r \neq 0$ y $r \neq 1$ - Para el valor de \boldsymbol{a} hallado encuentre la solución de la ecuación que satisface las condiciones $a_0 = 0, a_1 = 1$.

Ejercicio 2:

Sea X el conjunto de todas las cadenas de cuatro bits. Defina una relación R sobre X como s₁ Rs₂, si alguna subcadena de s₁ de longitud 2 es igual a alguna subcadena de longitud 2 de s₂. Se cambió por: s₁R s₂si y solo si s₁y s₂tienen la misma cantidad de bits en 1.

- 1. Probar que R es de equivalencia.
- 2. Hallar las clases de equivalencia .Describir el conjunto cociente.

Ejercicio 3:

- a. Definir árbol generador de un grafo
- b. Probar que un grafo tiene un árbol generador si y solo sí es conexo
- c. Explicar un algoritmo para obtener un árbol generador minimal.

Ejercicio 4:

- a. Sea G un árbol binario completo con n vértices internos entonces tiene 2n+1 vértices en total de los cuales n+1 son hojas.
- b. ¿Cuántas hojas y cuantos vértices internos tiene un árbol completo con 25 vértices totales? Enuncie y demuestre la propiedad utilizada

Ejercicio 5:

Demostrar:

- a. Si un grafo G tiene exactamente dos vértices de grado impar hay una trayectoria que une a esos dos vértices.
- b. El número máximo de aristas de un grafo no conexo simple con n vértices y k componentes es (n-k) (n-k+1)/2