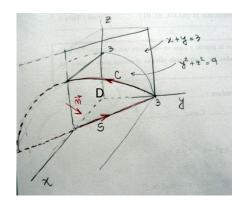
Coloquio 14-02-14:

1.- Sean $C = \{(x, y, z) \in \mathbb{R}^3 : y^2 + z^2 = 9; x + y = 3; z \ge 0\}$ y $\vec{F}(x, y, z) = (y + e^{x+y}, x + e^{x+y}f(z)), f \in C^1(\mathbb{R})$ Calcular la integral de línea de \vec{F} a lo largo de C indicando en un gráfico la orientación elegido.

La intersección entre el cilindro de eje x y el plano vertical x+y=3 determina una elipse, pero como debe ser $z \ge 0$, se trata sólo del arco superior de la elipse y por lo tanto no es una curva cerrada.



Si la cerramos con un segmento de recta S sobre el plano z=0 estaremos en condiciones de aplicar el Teorema de Stokes para calcular la circulación, ya que el campo $\vec{F}(x,y,z) = (y+e^{x+y},x+e^{x+y}f(z))$ es $C^1(\mathbb{R}^3)$, pero deberemos luego descontar la circulación sobre el segmento agregado.

Es
$$rot(\vec{F}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y + e^{x+y} & x + e^{x+y} & f(z) \end{vmatrix} = (0,0,0)$$
 por lo que el flujo a través del trozo D de plano $x + y = 3$ encerrado por la

curva es nulo.

Como por el Teorema es $\iint_D rot(\vec{F}).d\vec{s} = \int_C \vec{F}.d\vec{l} = \int_C \vec{F}.d\vec{l} + \int_S \vec{F}.d\vec{l}$ resulta $0 = \int_C \vec{F}.d\vec{l} + \int_S \vec{F}.d\vec{l}$ y entonces $\int_C \vec{F}.d\vec{l} = -\int_S \vec{F}.d\vec{l}$

El segmento S es la porción de recta $\begin{cases} x+y=3\\ z=0 \end{cases}$ que va desde el punto (6,-3,0) hasta el punto (0,3,0) pues esos son los dos puntos de intersección del cilindro $y^2+z^2=9$ con z=0 y x+y=3

Entonces es S:(x, y, z) = (6, -3, 0) + t[(0,3,0) - (6, -3,0)] con $t \in [0,1]$

$$\int_{C} \vec{F} \cdot d\vec{l} = -\int_{S} \vec{F} \cdot d\vec{l} = -\int_{0}^{1} \vec{F} \Big|_{S} \cdot (-6,6,0) dt =$$

$$= -\int_{0}^{1} [-6(-3+6t+e^{6-6t-3+6t}) + 6(6-6t+e^{6-6t-3+6t})] dt = \int_{0}^{1} (-54+72t) dt = -18$$

y ése es el valor de la circulación pedida, con la curva C orientada como se muestra en el gráfico.

2.- Sea Σ el trozo de cono de ecuación $z^2=4(x^2+y^2)$, con $2\leq z\leq a$. Determinar el valor de $a\in\mathbb{R}$ de manera tal que el área de sea $3\sqrt{5}\pi$.

(La superficie es "una pantalla de velador" puesta hacia arriba... ©)

Como la ecuación de la superficie se puede escribir $\left(\frac{z}{2}\right)^2 = x^2 + y^2$, se la puede parametrizar del siguiente modo: $\vec{X}(u,v) = (v\cos(u),v\sin(u),2v)$ para $u \in [0,2\pi], v \in [1,\frac{a}{2}]$

La normal a superficie es, entonces,

$$\vec{X}_{u} \times \vec{X}_{v} = (-v \operatorname{sen}(u), v \cos(u), 0) \times (\cos(u), \operatorname{sen}(u), 2) = (2v \cos(u), 2v \operatorname{sen}(u), -v)$$

cuya norma es $\|\vec{X}_{u} \times \vec{X}_{v}\| = \|(2v\cos(u), 2v\sin(u), -v)\| = \sqrt{5}v$

El área es, entonces, $\iint_{S} ds = \int_{0}^{2\pi} \int_{1}^{a/2} \sqrt{5} v du dv = 2\sqrt{5}\pi (\frac{a^{2}}{8} - \frac{1}{2})$ por lo que $a^{2} = 16$.

Como debe ser a > 2 . pues es $2 \le z \le a$, es a = 4.

3.- Calcular el flujo del campo $\vec{F}(x,y,z) = (x^2 + \cos(z), e^z - 2xy, y + 3z)$ a través de la superficie frontera del cuerpo $Q = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + (z+1)^2 \le 4; z \ge 0\}$ considerando la normal saliente.

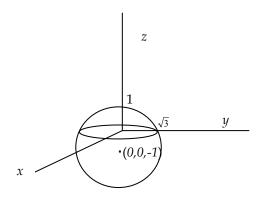
Como se trata de la frontera de un cuerpo, el flujo que se pide es a través de una superficie cerrada.

Como se pide considerar la normal saliente y el campo $\vec{F}(x,y,z) = (x^2 + \cos(z), e^z - 2xy, y + 3z)$ es $C^1(\mathbb{R}^3)$, podemos emplear el Teorema de la Divergencia.

$$\iint_{\partial Q} \vec{F} . d\vec{s} = \iiint_{Q} div(\vec{F}) dx dy dz$$

$$div(\vec{F}) = 2x - 2x + 3 = 3$$
 por lo que $\iint_{\partial Q} \vec{F} \cdot d\vec{s} = \iiint_{Q} 3dxdydz = 3Vol(Q)$

El volumen es una porción de esfera de radio 2, centrada en (0,0,-1):



$$Vol(Q) = \iint_{P_{xy}} dx dy \int_{0}^{\sqrt{4-x^2-y^2}-1} dz = \iint_{P_{xy}} (\sqrt{4-x^2-y^2}-1) dx dy = \int_{\text{coordenadas}}^{2\pi} \int_{0}^{\pi} d\theta \int_{0}^{\sqrt{3}} \rho(\sqrt{4-\rho^2}-1) d\rho$$
$$= 2\pi \left[-\frac{1}{2} \frac{(4-\rho^2)^{\frac{3}{2}}}{\frac{3}{2}} - \frac{\rho^2}{2} \right]_{0}^{\sqrt{3}} = \frac{5}{3}\pi$$

El flujo pedido vale, entonces, 5π .

4.- Sea el campo vectorial $\vec{F}(x, y) = (2x + 1, 2y - 1)$.

- a) Demostrar que \vec{F} es un campo de gradientes y hallar la función potencial Φ que satisface $\Phi(0,1)=0$.
- b) Para la Φ hallada en el ítem a), encontrar los extremos absolutos de Φ sobre la curva $x^2 + y^2 = 9$ y los puntos en los que los alcanza.
- a) Para demostrar que es campo de gradientes basta con hallar el potencial (\vec{F} es campo de gradientes si y sólo si $\exists \Phi / \vec{F} = \nabla \Phi$)

$$\vec{F}(x,y) = (2x+1,2y-1) = \nabla \Phi \implies \begin{cases} 2x+1 = \Phi'_x \to x^2 + x + g(y) = \Phi \to g'(y) = \Phi'_y \\ 2y-1 = \Phi'_y \end{cases}$$

$$\Phi'_{y} = 2y - 1 \rightarrow g(y) = y^{2} - y + C \rightarrow \Phi(x, y) = x^{2} + x + y^{2} - y + C$$

Si $\Phi(0,1) = 0$, debe ser C=0.

b) Para buscar los extremos de $\Phi(x,y) = x^2 + x + y^2 - y$ sobre $x^2 + y^2 = 9$, parametrizamos la curva: $\vec{X}(t) = (3\cos(t), 3\sin(t)), t \in [0, 2\pi]$.

$$\Phi(\vec{X}(t)) = 9 + 3\cos(t) - 3\sin(t) = f(t)$$

Buscamos los extremos de f(t) para $t \in [0,2\pi]$:

$$f''(t) = -3\operatorname{sen}(t) - 3\cos(t) = 0 \implies \tan(t) = -1 \implies t = \frac{3}{4}\pi \text{ \'o } t = \frac{7}{4}\pi$$
$$f'''(t) = -3\cos(t) + 3\operatorname{sen}(t); \ f''(\frac{3}{4}\pi) = 6 > 0; \ f''(\frac{7}{4}\pi) = -6 < 0$$

Entonces existe:

- un máximo relativo en $\vec{X}(\frac{7}{4}\pi) = (3\cos(\frac{7}{4}\pi), 3\sin(\frac{7}{4}\pi)) = (3\frac{\sqrt{2}}{2}, -3\frac{\sqrt{2}}{2})$, donde la función vale $\Phi((3\frac{\sqrt{2}}{2}, -3\frac{\sqrt{2}}{2})) = \frac{9}{2} + 3\frac{\sqrt{2}}{2} + \frac{9}{2} + 3\frac{\sqrt{2}}{2} = 9 + 3\sqrt{2}$ y
- un mínimo relativo en $\vec{X}(\frac{3}{4}\pi) = (3\cos(\frac{3}{4}\pi), 3\sin(\frac{3}{4}\pi)) = (-3\frac{\sqrt{2}}{2}, 3\frac{\sqrt{2}}{2})$, donde la función vale $\Phi(-3\frac{\sqrt{2}}{2}, 3\frac{\sqrt{2}}{2}) = \frac{9}{2} 3\frac{\sqrt{2}}{2} + \frac{9}{2} 3\frac{\sqrt{2}}{2} = 9 3\sqrt{2}$

Como $\Phi(\vec{X}(0)) = \Phi(\vec{X}(2\pi)) = 12 < 9 + 3\sqrt{2}$ y $12 > 9 - 3\sqrt{2}$, los extremos antes mencionados son absolutos.

- 5.- a) Sea la familia de curvas de ecuaciones $(x+3)^2 + 2(y-1)^2 = k$. Hallar la curva C perteneciente a la familia ortogonal a la familia dada, que pasa por el punto (-2,0).
- b) Calcular la circulación del campo vectorial $\vec{F}(x,y) = (\sqrt{2+x^4} y,2x + \sqrt{2+y^4})$ a lo largo del perímetro de la región plana delimitada por la curva C del ítem a) y el eje de las abscisas. Indicar en un gráfico el sentido elegido para calcular la circulación.
- a) Para $(x+3)^2 + 2(y-1)^2 = k$ la ecuación diferencial correspondiente es 2(x+3) + 4(y-1)y' = 0

Reemplazando y' por $-\frac{1}{y'}$ se obtiene la ecuación de la familia ortogonal: $2(x+3)-4(y-1)\frac{1}{y'}=0$ o bien

$$\underbrace{4(y-1)}_{P}dx\underbrace{-2(x+3)}_{Q}dy=0.$$

Como $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$ pero $\frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{Q} = \frac{6}{-2(x+3)}$ sólo depende de x, se trata de una ecuación que, mediante un factor integrante dependiente de x se transforma en diferencial exacto:

$$\underbrace{4(y-1)\mu(x)}_{\widetilde{P}}dx\underbrace{-2(x+3)\mu(x)}_{\widetilde{O}}dy = 0$$

$$\frac{\partial \widetilde{P}}{\partial y} = 4\mu(x) \underset{\text{debe}}{=} \frac{\partial Q}{\partial x} = -2\mu(x) - 2(x+3)\mu'(x)$$

$$-3\mu(x) = (x+3)\mu'(x) \implies \frac{-3}{x+3} = \frac{\mu'}{\mu} \implies -3\ln|x+3| + C = \ln|\mu|$$

Elegimos $\mu(x) = (x+3)^{-3}$:

$$\frac{4(y-1)}{(x+3)^3}dx - \frac{2}{(x+3)^3}dy = 0 \rightarrow \begin{cases} \widetilde{P} = \frac{4(y-1)}{(x+3)^3} = \Phi_x' \\ \widetilde{Q} = \frac{-2}{(x+3)^3} = \Phi_y' \end{cases} \rightarrow \frac{-2(y-1)}{(x+3)^2} + f(y) = \Phi \rightarrow \frac{-2}{(x+3)^2} + f'(y) = \Phi_y'$$

Entonces
$$f'(y) = 0$$
 y $\Phi = \frac{-2(y-1)}{(x+3)^2} + C$

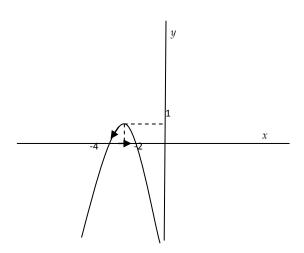
La solución de la ecuación diferencial es, entonces, $\frac{-2(y-1)}{(x+3)^2} = K$.

Como se busca la que pasa por (-2,0) debe ser $\frac{-2(0-1)}{(-2+3)^2} = 2 = K$

Entonces la curva buscada es $\frac{-2(y-1)}{(x+3)^2} = 2$ o bien $y = 1 - (x+3)^2$.

b) Como se trata de la circulación a lo largo de un *perímetro*, la curva es cerrada, y como $\vec{F}(x,y) = (\underbrace{\sqrt{2+x^4} - y}_{p}, \underbrace{2x + \sqrt{2+y^4}}_{p})$ es $C^1(\mathbb{R}^2)$, se puede recurrir al Teorema de Green.

Llamando D a la región encerrada entre la curva $y = 1 - (x+3)^2$ y el eje de las abscisas y C a su perímetro, se tiene:



$$\oint_C \vec{F} \cdot d\vec{l} = \iint_D (\vec{Q_x} - \vec{P_y}) dx dy = \iint_D (2 - (-1)) dx dy = 3 \iint_D dx dy = 3 \int_{-4}^{-2} dx \int_{0}^{1 - (x+3)^2} dy = 3 \int_{-4}^{-2} [1 - (x+3)^2] dx = 4$$