Resultados de la Guía - Probabilidad y Estadística (61.06 y 61.09) [Foros-FIUBA::Wiki]
 

Resultados de la Guía - Probabilidad y Estadística (61.06 y 61.09)

Guía 1: Probabilidad

    1. 0.56
    2. 0.14
    3. 0.04
    4. 0.26
  1. <tex>\mbox{Mujeres solteras no universitarias}=-57</tex>
    1. 0.36
    2. 0.64
    3. 0.53
    4. 0.17
    5. 0.75
    1. Roja
    2. Roja
    3. Blanca
    1. 0.45
    2. <tex>B=\{1,2,5\}</tex>
    3. <tex>C=\{\{3\}\}</tex>
    4. <tex>D=\{2\}</tex> o <tex>\{3\}</tex> o <tex>\{2,3\}</tex> o <tex>\{3,4\}</tex> o <tex>\{2,4\}</tex> o <tex>\{2,3,4\}</tex>
    5. FIXME
    1. 2/7
    2. 16/35
    3. 19/35
    4. 2/5
  2. El esposo.
    1. 1/6
    2. 13/18
    3. 1/12
    4. 1/4
    5. 5/18
    1. 0.5
    2. <tex>\frac{\pi}{4}</tex>
    3. <tex>P(C_{k})=\frac{\left(0.5+\frac{1}{k}\right)^{2}}{2}</tex> con <tex>k\geq2</tex>; <tex>P(\bigcap_{k=1}^{\infty}C_{k})=\frac{1}{8}</tex>
    4. <tex>P(D_{k})=\pi\left(\frac{1}{k}\right)^{2}</tex>; <tex>P(D)=0</tex>
    5. <tex>D_{k}</tex> representa el evento de que el dardo caiga dentro del círculo con centro en <tex>\left(\frac{1}{2},\frac{1}{2}\right)</tex> y radio <tex>\frac{1}{k}</tex>.
      <tex>D</tex> representa el evento de que el dardo caiga en el centro del círculo.
    1. FIXME
    2. <tex>P(\mbox{gane Juan})=P(\mbox{gane Maria})=\frac{5}{14}</tex>
      <tex>P(\mbox{gane Pedro})=\frac{2}{7}</tex>
      <tex>P(\mbox{nadie gana})=0</tex>
    1. 1/1000
    2. 1/59049
    3. 0
    1. Con reposición:
      1. 1/64
      2. 1/16
      3. 1/1600
      4. 3/8
    2. Sin reposición:
      1. 3/247
      2. 12/247
      3. 0
      4. 100/247
    1. 0.7015
    2. 0.0489
    1. 0.818
    2. <tex>P(k)=\frac{{100-k \choose 10}{k \choose 0}}{{100 \choose 10}}+\frac{{100-k \choose 9}{k \choose 1}}{{100 \choose 10}}</tex> si <tex>0<k\leq90</tex>
    3. 0.3329
  3. FIXME
  4. 0.916
  5. Conviene apostar al resultado del evento “A”
    1. 1/6
    2. 1/6
    3. 0
    4. 1/2
    5. 1/4
    1. 0.56
    2. 5/28
    3. 8/55
    4. 17/28
    5. 7/32
    6. 1/5
    1. 60/143
    2. 5/12
    1. 12/248
    2. 12/248
    3. 0.04858
    4. 158/63973
    5. 0.0508
    1. 1/3
    2. 1/2
    1. 3/4
    2. 1/2
    3. 3/8
    4. 1/5
    1. 0.44
    2. 19/22
  6. 9899/9900
    1. 1/3
    2. 40/63
    3. 9/23
    4. 17/21
    5. Van a dar los mismos resultados porque las proporciones son las mismas.
  7. FIXME
  8. FIXME
  9. 24/49
  10. FIXME
    1. 0.049
    2. 0.00006734
    1. 0.049
    2. 0.000067
    1. 0.0411
    2. 0.086
    3. FIXME
    4. 0.0611
    1. Al menos 5 respuestas correctas.
    2. 0.3671
    3. FIXME
    1. 1/2
    2. No son independientes.
  11. FIXME
  12. <tex>\begin{array}{|c|c|c|c|}\hline k & N=k & N\leq k & k\leq N\tabularnewline\hline \hline 0 & 400 & 400 & 900\tabularnewline\hline 1 & 400 & 800 & 500\tabularnewline\hline 2 & 100 & 900 & 100\tabularnewline\hline \end{array}</tex>
  13. FIXME
    1. 17/100
    2. 1/150
    3. 1/25
    4. 23/25
    5. <tex>\frac{\pi}{100}</tex>
    1. <tex>\Omega=\{1,2,3,\ldots,\}</tex>
    2. <tex>P\left(A_{1}\right)=\frac{1}{6}</tex>
      <tex>P\left(A_{7}\right)=\left(\frac{5}{6}\right)^{6}\times\left(\frac{1}{6}\right)^{1}</tex>
      <tex>P\left(A_{1017}\right)=\left(\frac{5}{6}\right)^{1016}\times\left(\frac{1}{6}\right)^{1}</tex>
    3. <tex>P(B_{1})=1</tex>
      <tex>P(B_{5})=0.4822</tex>
      <tex>P(B_{1000})=0</tex>
    4. FIXME
    5. <tex>P(B)=0</tex>
    1. <tex>P(\mbox{par})=0.422569</tex>
    2. <tex>P(\mbox{dos pares})=0.47539</tex>
    3. <tex>P(\mbox{terna})=0.021128</tex>
    4. <tex>P(\mbox{escalera})=0.003940</tex>
    5. <tex>P(\mbox{color})=0.001981</tex>
    6. <tex>P(\mbox{full})=0.001441</tex>
    7. <tex>P(\mbox{poker})=0.000240</tex>
    8. <tex>P(\mbox{escalera real})=0.000015</tex>
  14. FIXME
    1. 1/2
    2. 1/3
    • <tex>p_{0}=\frac{1}{4}</tex>
    • <tex>p_{8}=\frac{1}{4}</tex>
    • <tex>p_{5}=\frac{3}{8}</tex>
  15. FIXME
    1. 1/2
    2. 1/2
    3. <tex>\left(\frac{1}{2}\right)^{11}</tex>
    4. 4/5
    1. <tex>\frac{p}{p+q}</tex>
    2. <tex>\frac{p}{1-r^{3}}</tex> siendo <tex>r=1-p-q</tex>
    3. <tex>\frac{p}{p+q}</tex>

Guía 2: Funciones de densidad, distribución, conjuntas y marginales

  1. <tex>F_{X}</tex> es monótona no decreciente
    <tex>F_{X}</tex> es continua a derecha
    <tex>\lim_{x\to-\infty}=0</tex>
    <tex>\lim_{x\to\infty}=1</tex>
    1. En <tex>X=\pm2</tex>, donde <tex>P(X=\pm2)=\frac{1}{3}</tex>
    2. <tex>\frac{2}{3},1,\frac{2}{3},\frac{1}{3}</tex>
    3. <tex>0,\frac{1}{3},0</tex>
    4. <tex>1,\frac{2}{3}</tex>
    5. <tex>\frac{1}{2}</tex>
    1. <tex>F_{X}(0)=0</tex>
    2. <tex>F_{X}(0.8)=0.1</tex>
    3. <tex>F_{X}(2)=0.25</tex>
    4. <tex>F_{X}\left(2\sqrt{2}\right)=0.5</tex>
    5. <tex>F_{X}(4)=1</tex>
  2. FIXME
    1. <tex>F_{X}(x)=\begin{cases}0 & \mbox{si }0<x\\\frac{2}{3}x^{2}+\frac{1}{3}x & \mbox{si }0\leq x\leq1\\1 & \mbox{si }x>1\end{cases}</tex>
    2. <tex>\frac{1}{3}</tex>, <tex>\frac{4}{9}</tex>
    3. <tex>\frac{1}{10}</tex>
    1. <tex>f_{T*}=\begin{cases}0 & \forall\mbox{ otro }t*\\e^{-t*} & \mbox{si }0\leq t*<1\end{cases}</tex>
    2. <tex>e^{-1}</tex>
    1. <tex>\begin{array}{|c|c|}\hline k & P(X=k)\tabularnewline\hline \hline 0 & 0.0609\tabularnewline\hline 1 & 0.2284\tabularnewline\hline 2 & 0.3427\tabularnewline\hline 3 & 0.2570\tabularnewline\hline 4 & 0.0963\tabularnewline\hline 5 & 0.0144\tabularnewline\hline \end{array}</tex>
    2. <tex>\begin{array}{|c|c|}\hline k & P(X=k)\tabularnewline\hline \hline 1 & 0.1428\tabularnewline\hline 2 & 0.5714\tabularnewline\hline 3 & 0.2857\tabularnewline\hline \end{array}</tex>
  3. FIXME
    1. <tex>P(N=n)=\left(\frac{1}{4}\right)^{n-1}\left(\frac{3}{4}\right)</tex> para <tex>n\in N</tex>
    2. 4/5
    1. <tex>\theta\in\left[-\frac{1}{2},\frac{1}{2}\right]</tex>
    2. <tex>\mbox{Mediana}=\frac{-1+\sqrt{1+4\theta^{2}}}{2\theta}</tex>
    3. <tex>P(X<1)=1</tex>
      <tex>P(0<X\leq1)=\frac{1+\theta}{2}</tex>
      <tex>P\left(X<0|-\frac{1}{2}<X<\frac{1}{2}\right)=\frac{1}{2}-\frac{\theta}{4}</tex>
  4. 3/4
  5. 2/3
    1. <tex>f_{X}(x)=\frac{3x(20-x)}{3514}</tex> para <tex>3\leq x\leq17</tex>
    2. <tex>f_{X}(x)=\frac{x(20-x)}{162}</tex> para <tex>0<x<3</tex> o <tex>17<x<20</tex>
    1. <tex>f_{X|X<3}(x)=\begin{cases}0.5 & \mbox{si }0\leq x<2\\2-\frac{2}{5}x & \mbox{si }2\leq x<3\end{cases}</tex>
    2. <tex>f_{X|X>3}(x)=\frac{5}{2}-\frac{x}{2}</tex> si <tex>3<x<5</tex>
    1. <tex>f_{T}(t)=\beta\cdot\left(\frac{t}{\alpha}\right)^{\beta-1}\cdot e^{-\left(\frac{t}{\alpha}\right)^{\beta}}</tex>
      1. Fallas casuales.
      2. Fallas por desgaste.
      3. Fallas tempranas.
      4. Fallas tempranas.
      5. Fallas por desgaste.
      6. Fallas casuales.
    2. FIXME
    3. <tex>P(T>4|T>3)=1-e^{-\left(\frac{t}{\alpha}\right)^{\beta}}</tex>
    1. Sin reposición
      <tex>\begin{array}{|c||c|c|c|c}\cline{1-4} X\backslash Y & 0 & 1 & 2 & \mbox{Marginal de }X\tabularnewline\hline \hline 0 & 0 & 0.0285 & 0.0428 & \mathit{0.0714}\tabularnewline\hline 1 & 0.0428 & 0.2571 & 0.1285 & \mathit{0.4285}\tabularnewline\hline 2 & 0.1285 & 0.2571 & 0.0428 & \mathit{0.4285}\tabularnewline\hline 3 & 0.0428 & 0.0285 & 0 & \mathit{0.0714}\tabularnewline\hline \multicolumn{1}{c||}{\mbox{Marginal de }Y} & \mathit{0.2142} & \mathit{0.5714} & \mathit{0.2142} & \tabularnewline\end{array}</tex>
      <tex>P(X+Y\leq2)=\frac{1}{2}</tex>
    2. Con reposición
      <tex>\begin{array}{|c||c|c|c|c|c|c}\cline{1-6} X\backslash Y & 0 & 1 & 2 & 3 & 4 & \mbox{Marginal de }X\tabularnewline\hline \hline 0 & 0.0197 & 0.0527 & 0.0527 & 0.0234 & 0.039 & 0.3164\tabularnewline\hline 1 & 0.0791 & 0.1582 & 0.1054 & 0.0234 & 0 & 0.4218\tabularnewline\hline 2 & 0.1186 & 0.1582 & 0.0527 & 0 & 0 & 0.2109\tabularnewline\hline 3 & 0.0791 & 0.0527 & 0 & 0 & 0 & 0.0468\tabularnewline\hline 4 & 0.0197 & 0 & 0 & 0 & 0 & 0.0039\tabularnewline\hline \multicolumn{1}{c|}{\mbox{Marginal de }Y} & 0.3164 & 0.4218 & 0.2142 & 0.0468 & 0.0039 & \tabularnewline\end{array}</tex>
      <tex>P(X+Y\leq2)=0.4812</tex>
    1. 1/2
    2. <tex>f_{X}(x)=\left(\frac{2}{\pi}\right)\sqrt{1-x^{2}}</tex> para <tex>x\in[-1,1]</tex>
      <tex>f_{Y}(y)=\left(\frac{4}{\pi}\right)\sqrt{1-y^{2}}</tex> para <tex>y\in[0,1]</tex>
    3. No son independientes.
    1. 5/12
    2. <tex>f_{X}(x)=4x(1-x^{2})</tex> para <tex>0\leq x\leq1</tex>
      <tex>f_{Y}(y)=4y^{3}</tex> para <tex>0\leq y\le1</tex>
    3. No son independientes.
  6. 8/9
    1. 0.1035
    2. 4/9
    3. 0.127
    1. 1/50
    2. 47/100
    3. 17/18
    4. <tex>f_{T}(t)=\begin{cases}\frac{t-22}{136} & \mbox{ si }22<t<34\\\frac{12}{136} & \mbox{ si }34<t<36\\\frac{48-t}{136} & \mbox{ si }36<t<40\end{cases}</tex>

Guía 3: Esperanza, varianza y covarianza

    1. 1.1
    2. <tex>p_{3}=0.6</tex>
      <tex>x_{3}=0</tex>
    3. 1.625
    4. 2.2
    1. 2/3
    2. 1
    3. 7/9
    4. 7.2
  1. <tex>\frac{2}{3}\theta</tex>
    1. 19/18
    2. <tex>E[X|X<1]=\frac{2}{3}</tex>
      <tex>E[X|X\leq1]=\frac{5}{6}</tex>
    3. <tex>f_{X|X>1}(x)=1</tex> para <tex>1<x<2</tex>
    1. <tex>p_{1}=p_{3}=0.5</tex>
      <tex>p_{2}=0</tex>
    2. <tex>p_{1}=p_{3}=0</tex>
      <tex>p_{2}=1</tex>
    1. <tex>\frac{1800}{\pi}</tex>
    2. <tex>\sqrt{15}\pi</tex>
    1. <tex>\mu_{y}=2</tex>
      <tex>\sigma_{y}^{2}=36</tex>
    2. <tex>\mu_{y}=27</tex>
    3. <tex>\mu_{y}=16</tex>
    4. <tex>c=2</tex>
    5. <tex>a=\pm\frac{1}{3}</tex>, <tex>b=\mp\frac{2}{3}</tex>
    6. <tex>-11.4<a<11.4</tex>
  2. <tex>-\frac{1}{2}</tex>
    1. <tex>E[N]=\frac{19}{9}</tex>
      <tex>var(N)=0.3209</tex>
      <tex>cov(N,X_{1})=0</tex>
    2. FIXME
    3. <tex>cov(X_{i},X_{i})=var(X_{i})=\frac{2}{3}</tex>, <tex>cov(X_{i},X_{j})=-\frac{1}{3}</tex>
  3. <tex>\rho=-0.123</tex>
  4. FIXME
    1. 1/9
    2. 2/3
    3. 2/3
    1. <tex>E[Z]=\frac{2}{3}</tex>,
      <tex>var(Z)=\frac{1}{18}</tex>
      <tex>E[W]=\frac{1}{3}</tex>
      <tex>var(W)=\frac{1}{18}</tex>
    2. 7/18
    3. 1/36
    1. <tex>E[S_{n}]=2n</tex>
      <tex>var(S_{n})=9n</tex>
    2. FIXME
    3. <tex>n>9000</tex>

Guía 4: Transformación de variables aleatorias

    1. <tex>f_{Y}(y)=\frac{1}{9}\left(\frac{y-b}{a}+1\right)^{2}</tex> si <tex>b-a<y<2a+b</tex>
    2. <tex>f_{Y}(y)=\frac{\left(\sqrt[3]{-y}+1\right)^{2}}{27(-y)^{2/3}}</tex> si <tex>-8<y<0</tex> y <tex>0<y<1</tex>
    3. <tex>f_{Y}(y)=\frac{\left(\frac{3}{2}-\sqrt{9+4y}\right)^{2}+\left(\frac{3}{2}+\sqrt{9+4y}\right)^{2}}{18\sqrt{9+4y}}\mbox{ si }0<y<1,25</tex>
    4. <tex>f_{Y}(y)=\begin{cases}\frac{\left(1+\sqrt{y}\right)^{2}+\left(1-\sqrt{y}\right)^{2}}{18\sqrt{y}} & \mbox{si }0<y<1\\\frac{\left(1+\sqrt{y}\right)^{2}}{18\sqrt{y}} & \mbox{si }1<y<4\end{cases}</tex>
    5. <tex>F_{Y}(y)=\begin{cases}\frac{1}{27}\left(y+1\right)^{2} & \mbox{si }-1<y<1\\1 & \mbox{si }y\geq1\end{cases}</tex>
  1. <tex>f_{X}(x)=\frac{1}{\pi(1+x^{2})}</tex> para todo <tex>x</tex>
  2. FIXME
  3. <tex>f_{L}(l)=\frac{l}{30\pi}e^{-\frac{l^{2}}{60\pi}}</tex> si <tex>l>0</tex>
  4. <tex>y=\begin{cases}\frac{1-e^{-x}}{3} & \mbox{si }0<x<\ln(4)\\1-3e^{-x} & \mbox{si }x>\ln(4)\end{cases}</tex>
  5. <tex>f_{T}(t)=\begin{cases}\frac{1}{10} & \mbox{si }0<t<5\\\frac{1}{20} & \mbox{si }5\leq t<15\end{cases}</tex>
  6. <tex>F_{V_{2}}(v_{2})=\begin{cases}\frac{1}{2}v_{2}+\frac{1}{4} & \mbox{si }0\leq v_{2}<1\\1 & \mbox{si }v_{2}\geq1\end{cases}</tex>
  7. <tex>P(N=k)=e^{-\lambda k}(e^{\lambda}-1)</tex> para <tex>k\in N</tex>
  8. <tex>f_{Z}(z)=\begin{cases}z+1 & \mbox{si }-1\leq z<0\\1-z & \mbox{si }0\leq z<1\end{cases}</tex>
    1. <tex>f_{X}(x)=1</tex> si <tex>0<x<1</tex>
      <tex>f_{Y}(y)=1</tex> si <tex>0<y<1</tex>
    2. <tex>Z=X+Y</tex>
      <tex>f_{Z}(z)=\begin{cases}z & \mbox{si }0<z<1\\2-z & \mbox{si }1<z<2\end{cases}</tex>
  9. <tex>f_{Z}(z)=\begin{cases}\frac{45}{4}z^{2} & \mbox{si }0<z<0.5\\\frac{3}{4z^{2}}-\frac{3}{4}z^{2} & \mbox{si }0.5<z<1\end{cases}</tex>
  10. FIXME
  11. <tex>f_{U}(u)=\begin{cases}1.6(1-u) & \mbox{si }0<u<0.5\\3.2(1-u) & \mbox{si }0.5<u<1\end{cases}</tex>
    1. <tex>f_{U}(u)=\left(\lambda_{1}+\lambda_{2}\right)e^{-u\left(\lambda_{1}+\lambda_{2}\right)}</tex> para <tex>u>0</tex>
    2. <tex>P(j=1)=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}</tex>
      <tex>P(j=2)=\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}</tex>
  12. FIXME
  13. 0.2314
  14. <tex>f_{Z|Z<\frac{1}{4}}(z)=4</tex> para <tex>0<z<\frac{1}{4}</tex>
    1. <tex>f_{Z}(z)=\begin{cases}2 & \mbox{si }0<z<\frac{1}{4}\\\frac{2\left(1-\sqrt{z}\right)}{\sqrt{z}} & \mbox{si }\frac{1}{4}<z<1\end{cases}</tex>
    2. <tex>f_{V}(v)=\begin{cases}-\frac{148}{9}v+\frac{14}{3} & \mbox{si }0<v<0.25\\-\frac{4}{9}v+\frac{2}{3} & \mbox{si }0.25<v<1.5\end{cases}</tex>
  15. FIXME
  16. FIXME
  17. <tex>f(u,v)=u\lambda^{2}e^{-\lambda u}</tex> para <tex>u>0</tex> y <tex>0<v<1</tex>
    <tex>f(u)=u\lambda^{2}e^{-\lambda u}</tex> para <tex>u>0</tex>
    <tex>f(v)=1</tex> para <tex>0<v<1</tex>
    Son independientes.
  18. FIXME
  19. FIXME
  20. <tex>f_{X}(x)=\frac{1}{\pi(x^{2}+1)}</tex> si <tex>x\in(-\infty,\infty)</tex>
  21. FIXME
    1. 0.0128
      0.08
    2. <tex>F_{Y}(y)=\begin{cases}0 & \mbox{ si }y<0\\0.0128 & \mbox{ si }y=0\\\frac{2}{625}y^{2}+\frac{8}{625}y+0.0128 & \mbox{ si }0<y<10.5\\-\frac{2}{625}y^{2}+\frac{92}{625}y-0.6928 & \mbox{ si }10.5<y<18\\1 & \mbox{ si }y\geq18\end{cases}</tex>

Guía 5: Esperanza y varianza condicional, suma de variables aleatorias, mezcla, truncamiento

    1. <tex>f_{Y|X=0.75}(y)=\frac{4}{3}</tex> si <tex>0<y<0.75</tex>
      <tex>f_{Y|X=0.4}(y)=\frac{5}{2}</tex> si <tex>0<y<0.4</tex>
    2. No son independientes.
    3. <tex>\frac{1}{3}</tex>, 0,375
    1. <tex>f_{Y|X=x}(y)=\begin{cases}1 & \mbox{ si }0<y<1;0<x<0.5\\\frac{2}{3} & \mbox{ si }0<y<0.5;0.5<x<1\\\frac{4}{3} & \mbox{ si }0.5<y<1;0.5<x<1\end{cases}</tex>
    2. 0.5
    1. <tex>f(y_{1},y_{2})=\lambda^{2}y_{1}e^{-\lambda y_{1}}\frac{1}{y_{2}^{2}+2y_{2}+1}\mbox{ si }y_{1}>0;y{}_{2}>0</tex>
    2. <tex>f(y_{1},y_{3})=\frac{\lambda^{2}}{2}e^{-\lambda y_{1}}\begin{array}{ccc} {} & {} & {}\end{array}y_{1}>0;y_{1}>y{}_{3};y_{1}>-y{}_{3}</tex>
    3. <tex>\begin{array}{l}f_{y_{1}|y_{2}=1}(y_{1})=f(y_{1})=\lambda^{2}y_{1}e^{-\lambda y_{1}}\mbox{ si }y_{1}>0\\f_{y1|y3=0}(y_{1})=\lambda e^{-\lambda y_{1}}\mbox{ si }y_{1}>0\end{array}</tex>
    4. <tex>A=2e^{-1}</tex>
    5. <tex>B=e^{-1}</tex>
  1. FIXME
  2. <tex>f(Cc3)=\begin{cases}0.2689x & \mbox{ si }0<x<2\\0.2689(4-x) & \mbox{ si }2<x<3\\0.1176(4-x) & \mbox{ si }3<x<4\end{cases}</tex>
    1. 0,439
    2. 0,851
  3. <tex>\begin{array}{l}f(x)=\frac{1}{2\sqrt{2\pi}\sigma}\left(e^{-\frac{1}{2}\left(\frac{x+1}{\sigma}\right)^{2}}+e^{-\frac{1}{2}\left(\frac{x-1}{\sigma}\right)^{2}}\right)\\\psi(x)=\frac{e^{-x/\sigma^{2}}}{e^{-x/\sigma^{2}}+e^{x/\sigma^{2}}}\end{array}</tex>
    1. <tex>F_{Y|X=x}(y)=1-e^{xy}</tex> si <tex>x>0</tex>, <tex>y>0</tex>
    2. <tex>\varphi(x)=\frac{1}{x}</tex> si <tex>x>0</tex>
    3. <tex>E[Y|X]=\frac{1}{X}</tex>
    4. <tex>F(z)=e^{-\frac{1}{z}}</tex> si <tex>z>0</tex>
    5. 0,5811
    1. <tex>F{}_{Y|X=x}(y)=\frac{y}{x}</tex> si <tex>0<y<x</tex>, <tex>0<x<1</tex>
    2. <tex>\varphi(x)=\frac{x}{2}</tex> si <tex>0<x<1</tex>
      <tex>\varphi(x)=\frac{x^{2}}{12}</tex> si <tex>0<x<1</tex>
    3. <tex>E[Y|X]=\frac{X}{2}</tex>
      <tex>E[Y|X]=\frac{X^{2}}{12}</tex>
    4. <tex>\frac{1}{4}</tex>, <tex>\frac{9}{16}</tex>
  4. <tex>Z=E[Y|X]</tex>
    <tex>W=var[Y|X]</tex>Z
    <tex>P\left(Z=\frac{3}{8}\right)=\frac{9}{10}</tex>
    <tex>P\left(Z=\frac{7}{8}\right)=\frac{1}{10}</tex>
    <tex>P\left(W=\frac{3}{64}\right)=\frac{9}{10}</tex>
    <tex>P\left(W=\frac{1}{192}\right)=\frac{1}{10}</tex>
    <tex>P\left(W<\frac{1}{32}\right)=\frac{1}{10}</tex>
    1. <tex>P_{Y|X=x}(y)=\frac{{4 \choose y}{2 \choose 3-x-y}}{{6 \choose 3-x}}\mbox{ si }x=0,1,2,3;\,0\le y\le3-x</tex>.
    2. <tex>E[Y|X=x]=(3-x)\frac{4}{6}</tex>
      <tex>var[Y|X=x]=\left(9-x^{2}\right)\frac{2}{45}</tex>
    3. <tex>E[Y|X]=(3-X)\frac{4}{6}</tex>
      <tex>V[Y|X]=\left(9-X^{2}\right)\frac{2}{45}</tex>
  5. <tex>\varphi(x)=E[Y|X]=\frac{e^{x/\sigma^{2}}-e^{-x/\sigma^{2}}}{e^{-x/\sigma^{2}}+e^{x/\sigma^{2}}}</tex>
    1. <tex>E[Y|X]=0</tex>
      Son independientes.
    2. <tex>E[Y|X]=0</tex>
      No son independientes.
  6. 14
  7. 0
  8. <tex>Y=100-X</tex>
    <tex>cov(X,Y)=-25</tex>
  9. 2
  10. 5 mm a la derecha.
  11. 1
  12. <tex>E[Y]=7.5</tex>
    <tex>var(Y)=5.75</tex>
  13. <tex>E[T]=1.266</tex>
    <tex>var(T)=0.8434</tex>
    1. <tex>E[Y|X]=\frac{X^{2}}{2}</tex> si <tex>0<x<2</tex>
    2. <tex>Y=4X-\frac{14}{5}</tex>
    1. <tex>E[Y|X]=X^{2}</tex>
    2. <tex>Y=20X-50</tex>
  14. FIXME

Guía 6: Procesos Bernoulli, geométrico e hipergeométrico

    1. 0,6241
    2. 0,6992
    1. 0,6651
    2. 0,4018
    3. 0,2009
    1. 1 y 2
    2. 2
    3. <tex>\frac{n}{5}</tex>
  1. 0,8233
  2. 0.05174
  3. <tex>n\geq22</tex>
    1. 0.0531
    2. 0.2373
  4. <tex>E[N]=11.4</tex>
    <tex>var(N)=25.17</tex>
  5. 40
  6. 0,03348
  7. 0,1273
  8. FIXME
    1. 0,00277
    2. 0,1527
    3. 0,5042
  9. <tex>P(r=1)=\begin{cases}0 & \mbox{si }k=0\\\frac{1}{3} & \mbox{si }k=1\\\frac{10}{21} & \mbox{si }k=2\\\frac{15}{28} & \mbox{si }k=3\\\frac{5}{9} & \mbox{si }k=4\\\frac{5}{9} & \mbox{si }k=5\\\frac{6}{81} & \mbox{si }k=6\end{cases}</tex>
    Es más probable cuando <tex>k=4</tex> o <tex>k=5</tex>.
    1. <tex>P(Y=y)=\begin{cases}\frac{1}{6} & \mbox{si }y=0\\\frac{2}{3} & \mbox{si y=1}\\\frac{1}{6} & \mbox{si }y=2\end{cases}</tex>
    2. <tex>P(X=x)=\begin{cases}\frac{217}{270} & \mbox{si }x=0\\\frac{26}{135} & \mbox{si }x=1\\\frac{1}{270} & \mbox{si }x=2\end{cases}</tex>
    3. 19,63%
  10. FIXME
    1. 0,1297
    2. 0,3589
    3. 0,9896
    4. 0,2969
    5. 0,9999
    6. 0,00065
  11. 0,303
  12. FIXME
  13. <tex>E[M]=1</tex>
    <tex>cov(N,M)=4</tex>
  14. <tex>E[X]=\frac{1}{9}</tex>
    <tex>var(X)=0.1133</tex>
  15. 7,28

Guía 7: Procesos Poisson

    1. 0,1429
    2. 1 y 2
    3. 1,7817
    4. 0,218
    5. Aumento en 1 las instalaciones
    1. <tex>\sim Binom\left(p=\frac{2}{3},n=60\right)</tex>
    2. 0,108
    3. <tex>\sim Poisson(m=40)</tex>
    1. <tex>e^{-6}</tex>
    2. <tex>6e^{-6}</tex>
    3. 1/3
  1. 0,9901
    • Exponencial
      1. <tex>e{}^{-0,2}</tex>
      2. <tex>e{}^{-0,2}</tex>
      3. No tiene memoria
    • Gamma
      1. 0,9999
      2. 0,6993
    1. <tex>f_{X,S}(x,s)=s\lambda^{3}e^{-\lambda(s+x)}</tex>
    2. <tex>3\left(1-e^{-\lambda}\right)</tex>
  2. <tex>E[T]=7,692</tex> minutos
    1. 3/4
    2. <tex>P(X=x)=\frac{3}{4^{x+1}}</tex> si <tex>x\text{\ensuremath{\in}N}</tex>
    1. 0,0107
    2. 0,0286
    3. <tex>3\times10^{-7}</tex>
    4. 1/2
    5. 5/4
    1. 0,1025
    2. 0,2873
  3. <tex>e{}^{-60}</tex>
    1. 1/9
    2. 5/9
  4. 0,07985
  5. <tex>E[T]=2</tex>, <tex>var(T)=4</tex>
    1. 16,4
    2. 0,0656
  6. 1/4
  7. 240
    1. 0
    2. 0,0148
    3. 552 Kg
    4. 331.200 Kg
  8. FIXME
  9. FIXME

Guía 8: Distribución normal, TCL

  1. Trivial.
  2. Trivial.
  3. 0,676
  4. 0,0917
  5. 243,53
    1. 491.95
    2. IC: 394,26; 522,056
    3. 0.6157
  6. FIXME
  7. No son independientes. <tex>cov(W,Z)\neq0</tex>
    1. 0.9375
    2. 0.9327
    1. 0.245
    2. 0.591
  8. 0,5039
  9. 0,4348
    1. 0,0764
    2. 0,318
    3. 18.124,89
  10. FIXME
    1. 0,2209
    2. 0,612
    3. 0,2255; 0,6128
  11. FIXME
  12. 0,9545
  13. FIXME
  14. 0.023
  15. 0
  16. FIXME
  17. 103
  18. 1684
  19. 64

Guía 9: Estadística Bayesiana

  1. <tex>\pi(t|\mathbf{x})=6.76202\times0.0468644^{t}\times t^{5}\mbox{ si }t=\{1,\ldots,6\}</tex>
    Media: 1,9356
    Moda: 2
    1. <tex>\pi(t|\mathbf{x})=\begin{cases}\frac{125}{62}\cdot\frac{1}{2\sqrt{2\pi}}\cdot e^{-0.5\left(\frac{12.1-\mu}{2}\right)^{2}} & \mbox{ si }\mu=10\\\frac{375}{62}\cdot\frac{1}{2\sqrt{2\pi}}\cdot e^{-0.5\left(\frac{12.1-\mu}{2}\right)^{2}} & \mbox{ si }\mu=14\end{cases}</tex>
    2. <tex>P(Y>13)=0.2525</tex>
    1. <tex>\pi(k|\mathbf{x})=\frac{6k-k^{2}}{35}</tex> si <tex>k=\{0,\ldots,6\}</tex>
    2. 3
  2. <tex>\pi(\theta|5)=\frac{1}{2}(5-\theta)\mbox{ si }\theta\in[3,5]</tex>
    1. <tex>ab^{3}=3</tex>
    2. <tex>\pi(t|\bar{\mathbf{x}})=26244t^{3}\mbox{ si }0<t<\frac{1}{9}</tex>
      Media: <tex>\frac{4}{45}</tex>
      Moda: <tex>\frac{1}{9}</tex>
  3. <tex>\frac{13}{6}</tex>
  4. <tex>\frac{7}{22}</tex>
  5. FIXME
    1. Si hay 0 personas irritadas de las 10 encuestadas, la primera opinión (“poca gente irritada”) hará una buena estimación de <tex>p</tex>: <tex>\hat{p}=\frac{1}{21}</tex>.
      Si hay 0 personas irritadas de las 10 encuestadas, la segunda opinión (“mucha gente irritada”) hará una mala estimación de <tex>p</tex>: <tex>\hat{p}=\frac{10}{21}</tex>.
      Si hay 10 personas irritadas de las 10 encuestadas, la primera opinión (“poca gente irritada”) hará una mala estimación de <tex>p</tex>: <tex>\hat{p}=\frac{10}{21}</tex>.
      Si hay 10 personas irritadas de las 10 encuestadas, la segunda opinión (“mucha gente irritada”) hará una buena estimación de <tex>p</tex>: <tex>\hat{p}=\frac{20}{21}</tex>.
    2. <tex>n\geq8989</tex>
    1. Media: <tex>\frac{\nu}{\lambda}</tex>
      Moda: <tex>\frac{\nu-1}{\lambda}</tex>
    2. <tex>\pi(t|\bar{\mathbf{x}})\sim\Gamma\left(\lambda_{\Gamma}=n+\lambda,k_{\Gamma}=\left(\sum_{i=1}^{n}x_{i}\right)+\nu\right)</tex>
      Media: <tex>\frac{1}{1+\frac{\lambda}{n}}\bar{x}+\frac{1}{1+\frac{\lambda}{n}}\frac{\nu}{n}</tex>
    3. Moda: <tex>\frac{n+\nu-1}{\lambda+\sum_{i=1}^{n}x_{i}}</tex>
    1. <tex>P\left(Y\geq2\right)\approx0.555</tex>
    2. FIXME
    1. <tex>\pi(t|\bar{\mathbf{x}})=295245t^{-6}\mbox{ si }t\geq9</tex>
      Media: <tex>11.25</tex>
      Moda: 9
    2. <tex>\pi(t|\bar{\mathbf{x}})=38880t^{-6}\mbox{ si }t\geq6</tex>
      Media: <tex>7.5</tex>
      Moda: 6
    1. <tex>\pi(t|\mathbf{x})=\frac{e^{-\frac{2}{25}\left(t-173\right)^{2}}}{5\sqrt{\frac{\pi}{2}}}\text{ si }\mu>0</tex>
    2. Media: 173
    3. FIXME
    4. FIXME
    5. FIXME

Guía 10: Estimación Puntual

  1. Dado que <tex>ECM\left[\hat{\theta}_{1}\right]<ECM\left[\hat{\theta}_{2}\right]<ECM\left[\hat{\theta}_{3}\right]</tex>, el mejor estimador es <tex>\hat{\theta}_{1}</tex>.
    1. <tex>\hat{\theta}_{1}</tex> es insesgado.
      <tex>\hat{\theta}_{2}</tex> es sesgado.
    2. FIXME
  2. <tex>ECM\left[\hat{p}_{2}\right]<ECM\left[\hat{p}_{1}\right]</tex>, el estimador <tex>\hat{p}_{2}</tex> es preferible.
    1. <tex>f_{\hat{\Theta}}(t)=\frac{n}{\Theta^{n}}\cdot t^{n-1}</tex>
    2. <tex>B\left[\hat{\Theta}\right]=\Theta\left(\frac{n}{n+1}-1\right)</tex>
    3. FIXME
    4. FIXME
    1. <tex>P\left(\bar{X}<0.25\right)=0.89435</tex>
    2. <tex>P\left(S^{2}>0.577\right)=0.95</tex>
    3. <tex>P\left(0.576\leq\hat{p}\leq0.764\right)=0.68244</tex>
    4. FIXME
    1. <tex>\hat{\mu}_{mv}=\bar{X}</tex>
    2. <tex>\hat{p}_{mv}=\frac{\sum_{i=1}^{n}x_{i}}{n}</tex>
    3. <tex>\hat{\theta}_{mv}=\max\left(x_{1},\ldots,x_{n}\right)</tex>
  3. <tex>\hat{p}_ {mv}=\frac{2}{5}</tex>
  4. <tex>\hat{M}_{mv}=50</tex>
    1. -
    2. FIXME
    1. <tex>\hat{\mu}_{mv}=\frac{1}{n}\left[\sum_{i=1}^{n}x_{i}\right]</tex>
      <tex>\sigma^{2}=\frac{1}{n}\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}</tex>
    2. FIXME
  5. <tex>P(Y=1)=\frac{6}{11}</tex>
  6. FIXME
    1. <tex>\hat{\sigma^{2}} _{mv}=1.417</tex>
    2. No existe <tex>\hat{\sigma^{2}} _{mv}</tex>
    • El emv de la media es <tex> 581.8</tex>
    • El emv de la varianza es <tex> 338491.24</tex>
    • El emv de la mediana es <tex> 403.2730</tex>
  7. <tex> 0.64</tex>
  8. FIXME
  9. FIXME
  10. <tex>\hat{\lambda} _{mv}=\frac{1}{15}</tex>
  11. <tex>L \left(\lambda|\bar{x}\right)\propto\theta^{3}e^{-2\theta}</tex>
    <tex>\hat{\theta} _{mv}=\frac{3}{2}</tex>
  12. <tex> \hat{p}_{mv}=2\frac{r}{n}-\frac{1}{2}</tex>

Guía 11: Estimación por Intervalos

  1. <tex> P\left(\frac{\mathbf{x}}{\sqrt{1-\alpha}}<\theta\right)=1-\alpha</tex>
    1. <tex> Y=\frac{X_{(n)}}{\theta}</tex> es un pivote para <tex>\theta</tex>.
    2. <tex> P\left(X_{(n)}<\theta<\frac{X_{(n)}}{\sqrt[n]{\alpha}}\right)=1-\alpha</tex>
    3. <tex> k=\sqrt{10}</tex>
    1. <tex> P\left(7.3845<\mu<8.6912\right)=0.95</tex>
    2. <tex> n\geq38416</tex>
    1. <tex> P\left(299836.6<\mu<299868.2\right)=0.95</tex>
      El intervalo de confianza dado sólo dice lo siguiente: “si realizas otra medición de la velocidad de la luz, hay un 95\% de probabilidad de que <tex>\mu</tex> esté dentro de ese intervalo”.
    2. <tex>P\left(69.4855<\sigma<92.0106\right)=0.95</tex>
    3. FIXME
    1. <tex>X_{n+1}-\bar{X}_{n}\sim\mathcal{N}\left(0,\sigma^{2}\left[1-\frac{1}{n}\right]\right)</tex>
    2. <tex>P\left(2.542<X_{6}<5.4758\right)=0.9</tex>
    3. FIXME
    1. <tex>P\left[0.07142<p<0.12878\right]\approx0.9</tex>
    2. <tex>P\left[0.0778<p\right]\approx0.9</tex>
    3. FIXME
  2. 9604
    1. <tex>P\left[2.71275<\lambda<7.8525\right]=0.9</tex>
    2. <tex>P\left[2.78<5.4004\right]=0.9</tex>
  3. <tex>P\left[0.00021667<\lambda\right]=0.95</tex>
    1. <tex>P\left[0.15555<\lambda<1.02861\right]=0.95</tex>
    2. <tex>P\left[0.15555<\lambda<1.02861\right]=0.95</tex>
    1. <tex>P\left[0.4321<\Delta<56.31\right]=0.99</tex>
    2. <tex>P\left[6.84<\Delta<49.9\right]=0.99</tex>
    3. <tex>P\left[26.613<\Delta<30.128\right]=0.99</tex>
  4. Proveedor 1.

Guía 12: Test de Hipótesis y Test de Bondad de Ajuste

  1. <tex>P\left(\mbox{rechazar }H_{0}|\theta\right)=\frac{1}{35}\text{ si }\theta=3</tex>
    <tex>P\left(\mbox{aceptar }H_{0}|\theta\right)=\frac{31}{35}\mbox{ si }\theta=4</tex>
    1. <tex>P\left(\text{error tipo I}\right)=\frac{1}{3}</tex>
      <tex>P\left(\text{error tipo II}\right)=\frac{1}{2}</tex>
    2. <tex>P\left(\text{error tipo I}\right)=\frac{1}{3}</tex>
      <tex>P\left(\text{error tipo II}\right)=\frac{1}{2}</tex>
    3. FIXME
    1. <tex>pot(\theta)=\begin{cases}\left(\frac{2.9}{\theta}\right)^{n} & \text{ si }\theta\in[3,4]\\1 & \text{ si }\theta\in(0;2.9)\\\left(\frac{2.9}{\theta}\right)^{n} & \mbox{ si }\theta\in(2.9,3)\\\left(\frac{2.9}{\theta}\right)^{n}+1-\left(\frac{4}{\theta}\right)^{n} & \text{ si }\theta\in(4,\infty)\end{cases}</tex>
    2. <tex>NS=\left(\frac{2.9}{3}\right)^{n}</tex>
    3. <tex>n\geq68</tex>
  2. <tex>\delta(\mathbf{x})=\begin{cases}0 & \text{ si }2.3025\geq\mathbf{x}\\1 & \text{ si }2.3025<\mathbf{x}\end{cases}</tex>
    <tex>P\left[\delta(\mathbf{x})=0|\mu=1.1\right]=0.876</tex>
  3. <tex>\delta(\mathbf{x})=\begin{cases}1 & \mbox{ si }5<2.655583\\0 & \text{ si }5\geq2.655558\end{cases}</tex>
    No rechazamos <tex>H_{0}</tex>.
    1. F
    2. V
    3. F
    4. F
    5. V
    6. F
    7. F
    8. V
    1. <tex>\delta(\mathbf{x})=\begin{cases} 1 & \text{ si }\mu_{0}<\bar{X}-1.65\frac{\sigma}{\sqrt{n}}\\0 & \text{ si }\mu_{0}\geq\bar{X}-1.65\frac{\sigma}{\sqrt{n}} \end{cases}</tex>
    2. <tex>\beta(\mu)=1-\phi_{\bar{X}_{(\mu,\sigma)}}\left[\mu_{0}+1.65\frac{\sigma}{\sqrt{n}}\right]</tex>
  4. FIXME
  5. FIXME
  6. FIXME
  7. <tex>\delta(\mathbf{X})=\begin{cases} 1 & \text{ si }4\notin\left[\max\left\{ X_{i}\right\} ,1.3493\max\left\{ X_{i}\right\} \right]\\ 0 & \text{ si }4\in\left[\max\left\{ X_{i}\right\} ,1.3493\max\left\{ X_{i}\right\} \right]\end{cases}</tex>
  8. FIXME
  9. FIXME
  10. FIXME
  11. FIXME
  12. FIXME
  13. FIXME
  14. FIXME
  15. FIXME
  16. FIXME
  17. FIXME
  18. FIXME
  19. No se puede rechazar <tex>H_{0}</tex>.
    <tex>D^{2}=4.74</tex>
  20. No se puede rechazar <tex>H_{0}</tex>.
    <tex>D^{2}=3.26</tex>
  21. No se puede rechazar <tex>H_{0}</tex>.
    <tex>D^{2}=0.9</tex>
    1. No se puede rechazar <tex>H_{0}</tex>.
      <tex>D^{2}=10.408</tex>
    2. No se puede rechazar <tex>H_{0}</tex>.
      <tex>D^{2}=6.4</tex>
  22. FIXME
materias/61/09/resultados_guia.txt · Última modificación: 2012/09/13 20:25 por sebacuervo
 
Excepto donde se indique lo contrario, el contenido de esta wiki se autoriza bajo la siguiente licencia: CC Attribution-Noncommercial-Share Alike 3.0 Unported


Recent changes RSS feed Donate Powered by PHP Valid XHTML 1.0 Valid CSS Driven by DokuWiki