======Resultados de la Guía - Probabilidad y Estadística (61.06 y 61.09)====== =====Guía 1: Probabilidad===== - - 0.56 - 0.14 - 0.04 - 0.26 - \mbox{Mujeres solteras no universitarias}=-57 - - 0.36 - 0.64 - 0.53 - 0.17 - 0.75 - - Roja - Roja - Blanca - - 0.45 - B=\{1,2,5\} - C=\{\{3\}\} - D=\{2\} o \{3\} o \{2,3\} o \{3,4\} o \{2,4\} o \{2,3,4\} - FIXME - - 2/7 - 16/35 - 19/35 - 2/5 - El esposo. - - 1/6 - 13/18 - 1/12 - 1/4 - 5/18 - - 0.5 - \frac{\pi}{4} - P(C_{k})=\frac{\left(0.5+\frac{1}{k}\right)^{2}}{2} con k\geq2; P(\bigcap_{k=1}^{\infty}C_{k})=\frac{1}{8} - P(D_{k})=\pi\left(\frac{1}{k}\right)^{2}; P(D)=0 - D_{k} representa el evento de que el dardo caiga dentro del círculo con centro en \left(\frac{1}{2},\frac{1}{2}\right) y radio \frac{1}{k}.\\ D representa el evento de que el dardo caiga en el centro del círculo. - - FIXME - P(\mbox{gane Juan})=P(\mbox{gane Maria})=\frac{5}{14}\\ P(\mbox{gane Pedro})=\frac{2}{7}\\ P(\mbox{nadie gana})=0 - - 1/1000 - 1/59049 - 0 - - Con reposición: - 1/64 - 1/16 - 1/1600 - 3/8 - Sin reposición: - 3/247 - 12/247 - 0 - 100/247 - - 0.7015 - 0.0489 - - 0.818 - P(k)=\frac{{100-k \choose 10}{k \choose 0}}{{100 \choose 10}}+\frac{{100-k \choose 9}{k \choose 1}}{{100 \choose 10}} si 0 - 0.3329 - FIXME - 0.916 - Conviene apostar al resultado del evento "A" - - 1/6 - 1/6 - 0 - 1/2 - 1/4 - - 0.56 - 5/28 - 8/55 - 17/28 - 7/32 - 1/5 - - 60/143 - 5/12 - - 12/248 - 12/248 - 0.04858 - 158/63973 - 0.0508 - - 1/3 - 1/2 - - 3/4 - 1/2 - 3/8 - 1/5 - - 0.44 - 19/22 - 9899/9900 - - 1/3 - 40/63 - 9/23 - 17/21 - Van a dar los mismos resultados porque las proporciones son las mismas. - FIXME - FIXME - 24/49 - FIXME - - 0.049 - 0.00006734 - - 0.049 - 0.000067 - - 0.0411 - 0.086 - FIXME - 0.0611 - - Al menos 5 respuestas correctas. - 0.3671 - FIXME - - 1/2 - No son independientes. - FIXME - \begin{array}{|c|c|c|c|}\hline k & N=k & N\leq k & k\leq N\tabularnewline\hline \hline 0 & 400 & 400 & 900\tabularnewline\hline 1 & 400 & 800 & 500\tabularnewline\hline 2 & 100 & 900 & 100\tabularnewline\hline \end{array} - FIXME - - 17/100 - 1/150 - 1/25 - 23/25 - \frac{\pi}{100} - - \Omega=\{1,2,3,\ldots,\} - P\left(A_{1}\right)=\frac{1}{6}\\ P\left(A_{7}\right)=\left(\frac{5}{6}\right)^{6}\times\left(\frac{1}{6}\right)^{1}\\ P\left(A_{1017}\right)=\left(\frac{5}{6}\right)^{1016}\times\left(\frac{1}{6}\right)^{1} - P(B_{1})=1\\ P(B_{5})=0.4822\\ P(B_{1000})=0 - FIXME - P(B)=0 - - P(\mbox{par})=0.422569 - P(\mbox{dos pares})=0.47539 - P(\mbox{terna})=0.021128 - P(\mbox{escalera})=0.003940 - P(\mbox{color})=0.001981 - P(\mbox{full})=0.001441 - P(\mbox{poker})=0.000240 - P(\mbox{escalera real})=0.000015 - FIXME - - 1/2 - 1/3 - * p_{0}=\frac{1}{4} * p_{8}=\frac{1}{4} * p_{5}=\frac{3}{8} - FIXME - - 1/2 - 1/2 - \left(\frac{1}{2}\right)^{11} - 4/5 - - \frac{p}{p+q} - \frac{p}{1-r^{3}} siendo r=1-p-q - \frac{p}{p+q} =====Guía 2: Funciones de densidad, distribución, conjuntas y marginales===== - F_{X} es monótona no decreciente\\ F_{X} es continua a derecha\\ \lim_{x\to-\infty}=0\\ \lim_{x\to\infty}=1 - - En X=\pm2, donde P(X=\pm2)=\frac{1}{3} - \frac{2}{3},1,\frac{2}{3},\frac{1}{3} - 0,\frac{1}{3},0 - 1,\frac{2}{3} - \frac{1}{2} - - F_{X}(0)=0 - F_{X}(0.8)=0.1 - F_{X}(2)=0.25 - F_{X}\left(2\sqrt{2}\right)=0.5 - F_{X}(4)=1 - FIXME - - F_{X}(x)=\begin{cases}0 & \mbox{si }01\end{cases} - \frac{1}{3}, \frac{4}{9} - \frac{1}{10} - - f_{T*}=\begin{cases}0 & \forall\mbox{ otro }t*\\e^{-t*} & \mbox{si }0\leq t*<1\end{cases} - e^{-1} - - \begin{array}{|c|c|}\hline k & P(X=k)\tabularnewline\hline \hline 0 & 0.0609\tabularnewline\hline 1 & 0.2284\tabularnewline\hline 2 & 0.3427\tabularnewline\hline 3 & 0.2570\tabularnewline\hline 4 & 0.0963\tabularnewline\hline 5 & 0.0144\tabularnewline\hline \end{array} - \begin{array}{|c|c|}\hline k & P(X=k)\tabularnewline\hline \hline 1 & 0.1428\tabularnewline\hline 2 & 0.5714\tabularnewline\hline 3 & 0.2857\tabularnewline\hline \end{array} - FIXME - - P(N=n)=\left(\frac{1}{4}\right)^{n-1}\left(\frac{3}{4}\right) para n\in N - 4/5 - - \theta\in\left[-\frac{1}{2},\frac{1}{2}\right] - \mbox{Mediana}=\frac{-1+\sqrt{1+4\theta^{2}}}{2\theta} - P(X<1)=1\\ P(0\\ P\left(X<0|-\frac{1}{2} - 3/4 - 2/3 - - f_{X}(x)=\frac{3x(20-x)}{3514} para 3\leq x\leq17 - f_{X}(x)=\frac{x(20-x)}{162} para 0 o 17 - - f_{X|X<3}(x)=\begin{cases} 0.5 & \mbox{si }0\leq x<2\\ 2-\frac{2}{5}x & \mbox{si }2\leq x<3 \end{cases} - f_{X|X>3}(x)=\frac{5}{2}-\frac{x}{2} si 3 - - f_{T}(t)=\beta\cdot\left(\frac{t}{\alpha}\right)^{\beta-1}\cdot e^{-\left(\frac{t}{\alpha}\right)^{\beta}} - - Fallas casuales. - Fallas por desgaste. - Fallas tempranas. - Fallas tempranas. - Fallas por desgaste. - Fallas casuales. - FIXME - P(T>4|T>3)=1-e^{-\left(\frac{t}{\alpha}\right)^{\beta}} - - Sin reposición\\ \begin{array}{|c||c|c|c|c}\cline{1-4} X\backslash Y & 0 & 1 & 2 & \mbox{Marginal de }X\tabularnewline\hline \hline 0 & 0 & 0.0285 & 0.0428 & \mathit{0.0714}\tabularnewline\hline 1 & 0.0428 & 0.2571 & 0.1285 & \mathit{0.4285}\tabularnewline\hline 2 & 0.1285 & 0.2571 & 0.0428 & \mathit{0.4285}\tabularnewline\hline 3 & 0.0428 & 0.0285 & 0 & \mathit{0.0714}\tabularnewline\hline \multicolumn{1}{c||}{\mbox{Marginal de }Y} & \mathit{0.2142} & \mathit{0.5714} & \mathit{0.2142} & \tabularnewline\end{array}\\ P(X+Y\leq2)=\frac{1}{2} - Con reposición\\ \begin{array}{|c||c|c|c|c|c|c}\cline{1-6} X\backslash Y & 0 & 1 & 2 & 3 & 4 & \mbox{Marginal de }X\tabularnewline\hline \hline 0 & 0.0197 & 0.0527 & 0.0527 & 0.0234 & 0.039 & 0.3164\tabularnewline\hline 1 & 0.0791 & 0.1582 & 0.1054 & 0.0234 & 0 & 0.4218\tabularnewline\hline 2 & 0.1186 & 0.1582 & 0.0527 & 0 & 0 & 0.2109\tabularnewline\hline 3 & 0.0791 & 0.0527 & 0 & 0 & 0 & 0.0468\tabularnewline\hline 4 & 0.0197 & 0 & 0 & 0 & 0 & 0.0039\tabularnewline\hline \multicolumn{1}{c|}{\mbox{Marginal de }Y} & 0.3164 & 0.4218 & 0.2142 & 0.0468 & 0.0039 & \tabularnewline\end{array}\\ P(X+Y\leq2)=0.4812 - - 1/2 - f_{X}(x)=\left(\frac{2}{\pi}\right)\sqrt{1-x^{2}} para x\in[-1,1]\\ f_{Y}(y)=\left(\frac{4}{\pi}\right)\sqrt{1-y^{2}} para y\in[0,1] - No son independientes. - - 5/12 - f_{X}(x)=4x(1-x^{2}) para 0\leq x\leq1\\ f_{Y}(y)=4y^{3} para 0\leq y\le1 - No son independientes. - 8/9 - - 0.1035 - 4/9 - 0.127 - - 1/50 - 47/100 - 17/18 - f_{T}(t)=\begin{cases}\frac{t-22}{136} & \mbox{ si }22 =====Guía 3: Esperanza, varianza y covarianza===== - - 1.1 - p_{3}=0.6\\ x_{3}=0 - 1.625 - 2.2 - - 2/3 - 1 - 7/9 - 7.2 - \frac{2}{3}\theta - - 19/18 - E[X|X<1]=\frac{2}{3}\\ E[X|X\leq1]=\frac{5}{6} - f_{X|X>1}(x)=1 para 1 - - p_{1}=p_{3}=0.5\\ p_{2}=0 - p_{1}=p_{3}=0\\ p_{2}=1 - - \frac{1800}{\pi} - \sqrt{15}\pi - - \mu_{y}=2\\ \sigma_{y}^{2}=36 - \mu_{y}=27 - \mu_{y}=16 - c=2 - a=\pm\frac{1}{3}, b=\mp\frac{2}{3} - -11.4 - -\frac{1}{2} - - E[N]=\frac{19}{9}\\ var(N)=0.3209\\ cov(N,X_{1})=0 - FIXME - cov(X_{i},X_{i})=var(X_{i})=\frac{2}{3}, cov(X_{i},X_{j})=-\frac{1}{3} - \rho=-0.123 - FIXME - - 1/9 - 2/3 - 2/3 - - E[Z]=\frac{2}{3},\\ var(Z)=\frac{1}{18}\\ E[W]=\frac{1}{3}\\ var(W)=\frac{1}{18} - 7/18 - 1/36 - - E[S_{n}]=2n\\ var(S_{n})=9n - FIXME - n>9000 =====Guía 4: Transformación de variables aleatorias===== - - f_{Y}(y)=\frac{1}{9}\left(\frac{y-b}{a}+1\right)^{2} si b-a - f_{Y}(y)=\frac{\left(\sqrt[3]{-y}+1\right)^{2}}{27(-y)^{2/3}} si -8 y 0 - f_{Y}(y)=\frac{\left(\frac{3}{2}-\sqrt{9+4y}\right)^{2}+\left(\frac{3}{2}+\sqrt{9+4y}\right)^{2}}{18\sqrt{9+4y}}\mbox{ si }0 - f_{Y}(y)=\begin{cases}\frac{\left(1+\sqrt{y}\right)^{2}+\left(1-\sqrt{y}\right)^{2}}{18\sqrt{y}} & \mbox{si }0 - F_{Y}(y)=\begin{cases}\frac{1}{27}\left(y+1\right)^{2} & \mbox{si }-1 - f_{X}(x)=\frac{1}{\pi(1+x^{2})} para todo x - FIXME - f_{L}(l)=\frac{l}{30\pi}e^{-\frac{l^{2}}{60\pi}} si l>0 - y=\begin{cases}\frac{1-e^{-x}}{3} & \mbox{si }0\ln(4)\end{cases} - f_{T}(t)=\begin{cases}\frac{1}{10} & \mbox{si }0 - F_{V_{2}}(v_{2})=\begin{cases}\frac{1}{2}v_{2}+\frac{1}{4} & \mbox{si }0\leq v_{2}<1\\1 & \mbox{si }v_{2}\geq1\end{cases} - P(N=k)=e^{-\lambda k}(e^{\lambda}-1) para k\in N - f_{Z}(z)=\begin{cases}z+1 & \mbox{si }-1\leq z<0\\1-z & \mbox{si }0\leq z<1\end{cases} - - f_{X}(x)=1 si 0\\ f_{Y}(y)=1 si 0 - Z=X+Y\\ f_{Z}(z)=\begin{cases}z & \mbox{si }0 - f_{Z}(z)=\begin{cases}\frac{45}{4}z^{2} & \mbox{si }0 - FIXME - f_{U}(u)=\begin{cases}1.6(1-u) & \mbox{si }0 - - f_{U}(u)=\left(\lambda_{1}+\lambda_{2}\right)e^{-u\left(\lambda_{1}+\lambda_{2}\right)} para u>0 - P(j=1)=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\\ P(j=2)=\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} - FIXME - 0.2314 - f_{Z|Z<\frac{1}{4}}(z)=4 para 0 - - f_{Z}(z)=\begin{cases}2 & \mbox{si }0 - f_{V}(v)=\begin{cases}-\frac{148}{9}v+\frac{14}{3} & \mbox{si }0 - FIXME - FIXME - f(u,v)=u\lambda^{2}e^{-\lambda u} para u>0 y 0\\ f(u)=u\lambda^{2}e^{-\lambda u} para u>0\\ f(v)=1 para 0\\ Son independientes. - FIXME - FIXME - f_{X}(x)=\frac{1}{\pi(x^{2}+1)} si x\in(-\infty,\infty) - FIXME - - 0.0128\\ 0.08 - F_{Y}(y)=\begin{cases}0 & \mbox{ si }y<0\\0.0128 & \mbox{ si }y=0\\\frac{2}{625}y^{2}+\frac{8}{625}y+0.0128 & \mbox{ si }0 =====Guía 5: Esperanza y varianza condicional, suma de variables aleatorias, mezcla, truncamiento===== - - f_{Y|X=0.75}(y)=\frac{4}{3} si 0\\ f_{Y|X=0.4}(y)=\frac{5}{2} si 0 - No son independientes. - \frac{1}{3}, 0,375 - - f_{Y|X=x}(y)=\begin{cases}1 & \mbox{ si }0 - 0.5 - - f(y_{1},y_{2})=\lambda^{2}y_{1}e^{-\lambda y_{1}}\frac{1}{y_{2}^{2}+2y_{2}+1}\mbox{ si }y_{1}>0;y{}_{2}>0 - f(y_{1},y_{3})=\frac{\lambda^{2}}{2}e^{-\lambda y_{1}}\begin{array}{ccc} {} & {} & {}\end{array}y_{1}>0;y_{1}>y{}_{3};y_{1}>-y{}_{3} - \begin{array}{l}f_{y_{1}|y_{2}=1}(y_{1})=f(y_{1})=\lambda^{2}y_{1}e^{-\lambda y_{1}}\mbox{ si }y_{1}>0\\f_{y1|y3=0}(y_{1})=\lambda e^{-\lambda y_{1}}\mbox{ si }y_{1}>0\end{array} - A=2e^{-1} - B=e^{-1} - FIXME - f(Cc3)=\begin{cases}0.2689x & \mbox{ si }0 - - 0,439 - 0,851 - \begin{array}{l}f(x)=\frac{1}{2\sqrt{2\pi}\sigma}\left(e^{-\frac{1}{2}\left(\frac{x+1}{\sigma}\right)^{2}}+e^{-\frac{1}{2}\left(\frac{x-1}{\sigma}\right)^{2}}\right)\\\psi(x)=\frac{e^{-x/\sigma^{2}}}{e^{-x/\sigma^{2}}+e^{x/\sigma^{2}}}\end{array} - - F_{Y|X=x}(y)=1-e^{xy} si x>0, y>0 - \varphi(x)=\frac{1}{x} si x>0 - E[Y|X]=\frac{1}{X} - F(z)=e^{-\frac{1}{z}} si z>0 - 0,5811 - - F{}_{Y|X=x}(y)=\frac{y}{x} si 0, 0 - \varphi(x)=\frac{x}{2} si 0\\ \varphi(x)=\frac{x^{2}}{12} si 0 - E[Y|X]=\frac{X}{2}\\ E[Y|X]=\frac{X^{2}}{12} - \frac{1}{4}, \frac{9}{16} - Z=E[Y|X]\\ W=var[Y|X]Z\\ P\left(Z=\frac{3}{8}\right)=\frac{9}{10}\\ P\left(Z=\frac{7}{8}\right)=\frac{1}{10}\\ P\left(W=\frac{3}{64}\right)=\frac{9}{10}\\ P\left(W=\frac{1}{192}\right)=\frac{1}{10}\\ P\left(W<\frac{1}{32}\right)=\frac{1}{10} - - P_{Y|X=x}(y)=\frac{{4 \choose y}{2 \choose 3-x-y}}{{6 \choose 3-x}}\mbox{ si }x=0,1,2,3;\,0\le y\le3-x. - E[Y|X=x]=(3-x)\frac{4}{6}\\ var[Y|X=x]=\left(9-x^{2}\right)\frac{2}{45} - E[Y|X]=(3-X)\frac{4}{6}\\ V[Y|X]=\left(9-X^{2}\right)\frac{2}{45} - \varphi(x)=E[Y|X]=\frac{e^{x/\sigma^{2}}-e^{-x/\sigma^{2}}}{e^{-x/\sigma^{2}}+e^{x/\sigma^{2}}} - - E[Y|X]=0\\ Son independientes. - E[Y|X]=0\\ No son independientes. - 14 - 0 - Y=100-X\\ cov(X,Y)=-25 - 2 - 5 mm a la derecha. - 1 - E[Y]=7.5\\ var(Y)=5.75 - E[T]=1.266\\ var(T)=0.8434 - - E[Y|X]=\frac{X^{2}}{2} si 0 - Y=4X-\frac{14}{5} - - E[Y|X]=X^{2} - Y=20X-50 - FIXME =====Guía 6: Procesos Bernoulli, geométrico e hipergeométrico===== - - 0,6241 - 0,6992 - - 0,6651 - 0,4018 - 0,2009 - - 1 y 2 - 2 - \frac{n}{5} - 0,8233 - 0.05174 - n\geq22 - - 0.0531 - 0.2373 - E[N]=11.4\\ var(N)=25.17 - 40 - 0,03348 - 0,1273 - FIXME - - 0,00277 - 0,1527 - 0,5042 - P(r=1)=\begin{cases}0 & \mbox{si }k=0\\\frac{1}{3} & \mbox{si }k=1\\\frac{10}{21} & \mbox{si }k=2\\\frac{15}{28} & \mbox{si }k=3\\\frac{5}{9} & \mbox{si }k=4\\\frac{5}{9} & \mbox{si }k=5\\\frac{6}{81} & \mbox{si }k=6\end{cases}\\ Es más probable cuando k=4 o k=5. - - P(Y=y)=\begin{cases}\frac{1}{6} & \mbox{si }y=0\\\frac{2}{3} & \mbox{si y=1}\\\frac{1}{6} & \mbox{si }y=2\end{cases} - P(X=x)=\begin{cases}\frac{217}{270} & \mbox{si }x=0\\\frac{26}{135} & \mbox{si }x=1\\\frac{1}{270} & \mbox{si }x=2\end{cases} - 19,63% - FIXME - - 0,1297 - 0,3589 - 0,9896 - 0,2969 - 0,9999 - 0,00065 - 0,303 - FIXME - E[M]=1\\ cov(N,M)=4 - E[X]=\frac{1}{9}\\ var(X)=0.1133 - 7,28 =====Guía 7: Procesos Poisson===== - - 0,1429 - 1 y 2 - 1,7817 - 0,218 - Aumento en 1 las instalaciones - - \sim Binom\left(p=\frac{2}{3},n=60\right) - 0,108 - \sim Poisson(m=40) - - e^{-6} - 6e^{-6} - 1/3 - 0,9901 - * Exponencial - e{}^{-0,2} - e{}^{-0,2} - No tiene memoria * Gamma - 0,9999 - 0,6993 - - f_{X,S}(x,s)=s\lambda^{3}e^{-\lambda(s+x)} - 3\left(1-e^{-\lambda}\right) - E[T]=7,692 minutos - - 3/4 - P(X=x)=\frac{3}{4^{x+1}} si x\text{\ensuremath{\in}N} - - 0,0107 - 0,0286 - 3\times10^{-7} - 1/2 - 5/4 - - 0,1025 - 0,2873 - e{}^{-60} - - 1/9 - 5/9 - 0,07985 - E[T]=2, var(T)=4 - - 16,4 - 0,0656 - 1/4 - 240 - - 0 - 0,0148 - 552 Kg - 331.200 Kg - FIXME - FIXME =====Guía 8: Distribución normal, TCL===== - Trivial. - Trivial. - 0,676 - 0,0917 - 243,53 - - 491.95 - IC: 394,26; 522,056 - 0.6157 - FIXME - No son independientes. cov(W,Z)\neq0 - - 0.9375 - 0.9327 - - 0.245 - 0.591 - 0,5039 - 0,4348 - - 0,0764 - 0,318 - 18.124,89 - FIXME - - 0,2209 - 0,612 - 0,2255; 0,6128 - FIXME - 0,9545 - FIXME - 0.023 - 0 - FIXME - 103 - 1684 - 64 =====Guía 9: Estadística Bayesiana===== - \pi(t|\mathbf{x})=6.76202\times0.0468644^{t}\times t^{5}\mbox{ si }t=\{1,\ldots,6\}\\ Media: 1,9356\\ Moda: 2 - - \pi(t|\mathbf{x})=\begin{cases}\frac{125}{62}\cdot\frac{1}{2\sqrt{2\pi}}\cdot e^{-0.5\left(\frac{12.1-\mu}{2}\right)^{2}} & \mbox{ si }\mu=10\\\frac{375}{62}\cdot\frac{1}{2\sqrt{2\pi}}\cdot e^{-0.5\left(\frac{12.1-\mu}{2}\right)^{2}} & \mbox{ si }\mu=14\end{cases} - P(Y>13)=0.2525 - - \pi(k|\mathbf{x})=\frac{6k-k^{2}}{35} si k=\{0,\ldots,6\} - 3 - \pi(\theta|5)=\frac{1}{2}(5-\theta)\mbox{ si }\theta\in[3,5] - - ab^{3}=3 - \pi(t|\bar{\mathbf{x}})=26244t^{3}\mbox{ si }0\\ Media: \frac{4}{45}\\ Moda: \frac{1}{9} - \frac{13}{6} - \frac{7}{22} - FIXME - - Si hay 0 personas irritadas de las 10 encuestadas, la primera opinión ("poca gente irritada") hará una buena estimación de p: \hat{p}=\frac{1}{21}.\\ Si hay 0 personas irritadas de las 10 encuestadas, la segunda opinión ("mucha gente irritada") hará una mala estimación de p: \hat{p}=\frac{10}{21}.\\ Si hay 10 personas irritadas de las 10 encuestadas, la primera opinión ("poca gente irritada") hará una mala estimación de p: \hat{p}=\frac{10}{21}.\\ Si hay 10 personas irritadas de las 10 encuestadas, la segunda opinión ("mucha gente irritada") hará una buena estimación de p: \hat{p}=\frac{20}{21}. - n\geq8989 - - Media: \frac{\nu}{\lambda}\\ Moda: \frac{\nu-1}{\lambda} - \pi(t|\bar{\mathbf{x}})\sim\Gamma\left(\lambda_{\Gamma}=n+\lambda,k_{\Gamma}=\left(\sum_{i=1}^{n}x_{i}\right)+\nu\right)\\ Media: \frac{1}{1+\frac{\lambda}{n}}\bar{x}+\frac{1}{1+\frac{\lambda}{n}}\frac{\nu}{n} - Moda: \frac{n+\nu-1}{\lambda+\sum_{i=1}^{n}x_{i}} - - P\left(Y\geq2\right)\approx0.555 - FIXME - - \pi(t|\bar{\mathbf{x}})=295245t^{-6}\mbox{ si }t\geq9\\ Media: 11.25\\ Moda: 9 - \pi(t|\bar{\mathbf{x}})=38880t^{-6}\mbox{ si }t\geq6\\ Media: 7.5\\ Moda: 6 - - \pi(t|\mathbf{x})=\frac{e^{-\frac{2}{25}\left(t-173\right)^{2}}}{5\sqrt{\frac{\pi}{2}}}\text{ si }\mu>0 - Media: 173 - FIXME - FIXME - FIXME =====Guía 10: Estimación Puntual===== - Dado que ECM\left[\hat{\theta}_{1}\right], el mejor estimador es \hat{\theta}_{1}. - - \hat{\theta}_{1} es insesgado.\\ \hat{\theta}_{2} es sesgado. - FIXME - ECM\left[\hat{p}_{2}\right], el estimador \hat{p}_{2} es preferible. - - f_{\hat{\Theta}}(t)=\frac{n}{\Theta^{n}}\cdot t^{n-1} - B\left[\hat{\Theta}\right]=\Theta\left(\frac{n}{n+1}-1\right) - FIXME - FIXME - - P\left(\bar{X}<0.25\right)=0.89435 - P\left(S^{2}>0.577\right)=0.95 - P\left(0.576\leq\hat{p}\leq0.764\right)=0.68244 - FIXME - - \hat{\mu}_{mv}=\bar{X} - \hat{p}_{mv}=\frac{\sum_{i=1}^{n}x_{i}}{n} - \hat{\theta}_{mv}=\max\left(x_{1},\ldots,x_{n}\right) - \hat{p}_ {mv}=\frac{2}{5} - \hat{M}_{mv}=50 - - - - FIXME - - \hat{\mu}_{mv}=\frac{1}{n}\left[\sum_{i=1}^{n}x_{i}\right]\\ \sigma^{2}=\frac{1}{n}\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} - FIXME - P(Y=1)=\frac{6}{11} - FIXME - - \hat{\sigma^{2}} _{mv}=1.417 - No existe \hat{\sigma^{2}} _{mv} - * El emv de la media es 581.8 * El emv de la varianza es 338491.24 * El emv de la mediana es 403.2730 - 0.64 - FIXME - FIXME - \hat{\lambda} _{mv}=\frac{1}{15} - L \left(\lambda|\bar{x}\right)\propto\theta^{3}e^{-2\theta}\\ \hat{\theta} _{mv}=\frac{3}{2} - \hat{p}_{mv}=2\frac{r}{n}-\frac{1}{2} =====Guía 11: Estimación por Intervalos===== - P\left(\frac{\mathbf{x}}{\sqrt{1-\alpha}}<\theta\right)=1-\alpha - - Y=\frac{X_{(n)}}{\theta} es un pivote para \theta. - P\left(X_{(n)}<\theta<\frac{X_{(n)}}{\sqrt[n]{\alpha}}\right)=1-\alpha - k=\sqrt{10} - - P\left(7.3845<\mu<8.6912\right)=0.95 - n\geq38416 - - P\left(299836.6<\mu<299868.2\right)=0.95\\ El intervalo de confianza dado sólo dice lo siguiente: "si realizas otra medición de la velocidad de la luz, hay un 95\% de probabilidad de que \mu esté dentro de ese intervalo". - P\left(69.4855<\sigma<92.0106\right)=0.95 - FIXME - - X_{n+1}-\bar{X}_{n}\sim\mathcal{N}\left(0,\sigma^{2}\left[1-\frac{1}{n}\right]\right) - P\left(2.542 - FIXME - - P\left[0.07142 - P\left[0.0778 - FIXME - 9604 - - P\left[2.71275<\lambda<7.8525\right]=0.9 - P\left[2.78<5.4004\right]=0.9 - P\left[0.00021667<\lambda\right]=0.95 - - P\left[0.15555<\lambda<1.02861\right]=0.95 - P\left[0.15555<\lambda<1.02861\right]=0.95 - - P\left[0.4321<\Delta<56.31\right]=0.99 - P\left[6.84<\Delta<49.9\right]=0.99 - P\left[26.613<\Delta<30.128\right]=0.99 - Proveedor 1. =====Guía 12: Test de Hipótesis y Test de Bondad de Ajuste===== - P\left(\mbox{rechazar }H_{0}|\theta\right)=\frac{1}{35}\text{ si }\theta=3\\ P\left(\mbox{aceptar }H_{0}|\theta\right)=\frac{31}{35}\mbox{ si }\theta=4 - - P\left(\text{error tipo I}\right)=\frac{1}{3}\\ P\left(\text{error tipo II}\right)=\frac{1}{2} - P\left(\text{error tipo I}\right)=\frac{1}{3}\\ P\left(\text{error tipo II}\right)=\frac{1}{2} - FIXME - - pot(\theta)=\begin{cases}\left(\frac{2.9}{\theta}\right)^{n} & \text{ si }\theta\in[3,4]\\1 & \text{ si }\theta\in(0;2.9)\\\left(\frac{2.9}{\theta}\right)^{n} & \mbox{ si }\theta\in(2.9,3)\\\left(\frac{2.9}{\theta}\right)^{n}+1-\left(\frac{4}{\theta}\right)^{n} & \text{ si }\theta\in(4,\infty)\end{cases} - NS=\left(\frac{2.9}{3}\right)^{n} - n\geq68 - \delta(\mathbf{x})=\begin{cases}0 & \text{ si }2.3025\geq\mathbf{x}\\1 & \text{ si }2.3025<\mathbf{x}\end{cases}\\ P\left[\delta(\mathbf{x})=0|\mu=1.1\right]=0.876 - \delta(\mathbf{x})=\begin{cases}1 & \mbox{ si }5<2.655583\\0 & \text{ si }5\geq2.655558\end{cases}\\ No rechazamos H_{0}. - - F - V - F - F - V - F - F - V - - \delta(\mathbf{x})=\begin{cases} 1 & \text{ si }\mu_{0}<\bar{X}-1.65\frac{\sigma}{\sqrt{n}}\\ 0 & \text{ si }\mu_{0}\geq\bar{X}-1.65\frac{\sigma}{\sqrt{n}} \end{cases} - \beta(\mu)=1-\phi_{\bar{X}_{(\mu,\sigma)}}\left[\mu_{0}+1.65\frac{\sigma}{\sqrt{n}}\right] - FIXME - FIXME - FIXME - \delta(\mathbf{X})=\begin{cases} 1 & \text{ si }4\notin\left[\max\left\{ X_{i}\right\} ,1.3493\max\left\{ X_{i}\right\} \right]\\ 0 & \text{ si }4\in\left[\max\left\{ X_{i}\right\} ,1.3493\max\left\{ X_{i}\right\} \right] \end{cases} - FIXME - FIXME - FIXME - FIXME - FIXME - FIXME - FIXME - FIXME - FIXME - FIXME - FIXME - No se puede rechazar H_{0}.\\ D^{2}=4.74 - No se puede rechazar H_{0}.\\ D^{2}=3.26 - No se puede rechazar H_{0}.\\ D^{2}=0.9 - - No se puede rechazar H_{0}.\\ D^{2}=10.408 - No se puede rechazar H_{0}.\\ D^{2}=6.4 - FIXME